7.1 数据的加载机制(全量加载+增量加载)

全量加载

案例介绍:
从技术角度来说,全量加载比增量加载的操作要简单很多,即只需要在数据加载之前,将目标数据表进行清空,再将源数据表中的数据全部加载到目标表中。
通过Kettle工具将数据表full_source中的数据全量加载到数据表full_target中。
案例实现:
数据准备:
假设,现有两张数据表,分别为数据表full_source和数据表full_target,其中数据表full_source为源数据表,数据表full_target为目标数据表。
设置组件
使用Kettle工具,创建一个转换full_load,并添加执行SQL脚本控件、表输入控件、表输出控件以及Hop跳连接线,具体如图所示。
在这里插入图片描述
配置表输入:
新建连接,然后写入删除数据表 full_target的sql语句
在这里插入图片描述
配置表输入
新建数据库连接之后,点击获取语句,选择所要的表就会自动生成选择该表的SQL语句
在这里插入图片描述
配置表输出
使用之前编辑好的数据库连接,
然后在浏览处选择数据表full_target(若是没有事先建立数据表full_target可以在目标表处输入数据表名full_target,然后点击下方的SQL,会自动根据之前的组件传来的数据字段,生成相应的表)
在这里插入图片描述
结果:
在这里插入图片描述
在这里插入图片描述

增量加载

案例介绍
增量加载是指目标表仅加载源数据表中新增和发生变化的数据。优秀的增量加载机制不但能够将业务系统中的变化数据按一定的频率准确地捕获到并加载到目标表中,同时还不会对业务系统造成太大的压力,也不会影响现有业务。
通过Kettle工具将数据表incremental_source中的数据增量加载到数据表incremental_target中。
案例实现
数据准备
假设,现有两张数据表,分别为incremental_source和incremental_target,其中incremental_source为源数据表,incremental_target为目标数据表。数据表incremental_source和incremental_target的表结构、数据都是相同的
组件配置
在这里插入图片描述

配置表输入
在这里插入图片描述
配置插入/更新组件
选择需要插入增量的表格,然后选择id为用来匹配的关键字
然后点击获取和更新字段
在这里插入图片描述
结果:
在这里插入图片描述

1. 项目概述 银行数据集市项目是为银行内部各部门提供数据查询、分析决策支持的数据仓库系统,主要包含客户信息、账户信息、贷款信息、交易信息等数据内容。ETL(Extract-Transform-Load)开发是数据仓库系统的关键环节,本文档主要描述ETL开发的需求。 2. 功能需求 2.1 数据抽取(Extract) 2.1.1 抽取数据来源:数据来源包括银行内部各系统、第三方数据提供商等。 2.1.2 抽取方式:支持增量抽取全量抽取两种方式,增量抽取可根据时间戳或者增量标识进行抽取,全量抽取可根据定时任务或手动触发进行抽取。 2.1.3 抽取数据格式:支持各种结构化半结构化数据格式,如CSV、XML、JSON等。 2.1.4 抽取数据量:支持大规模数据抽取,可设置抽取数据量上限。 2.2 数据转换(Transform) 2.2.1 数据清洗:支持数据去重、数据过滤、数据规范化等数据清洗功能。 2.2.2 数据计算:支持各种数据计算、聚合、分组统计等操作。 2.2.3 数据合并:支持数据合并、拆分、关联等操作。 2.2.4 数据转换:支持数据格式转换、数据加密、数据压缩等操作。 2.3 数据加载(Load) 2.3.1 目标数据仓库:支持多种数据仓库类型,如关系型数据库、NoSQL数据库等。 2.3.2 数据加载方式:支持增量加载全量加载两种方式,增量加载可根据时间戳或增量标识进行加载全量加载可根据定时任务或手动触发进行加载。 2.3.3 数据加载效率:支持并行加载,提高数据加载效率。 3. 性能需求 3.1 数据抽取性能:支持高效、稳定的数据抽取,可设置抽取速度上限。 3.2 数据转换性能:支持高效、稳定的数据转换,可设置转换速度上限。 3.3 数据加载性能:支持高效、稳定的数据加载,可设置加载速度上限。 4. 安全需求 4.1 数据安全:支持数据加密、数据脱敏等数据安全保护措施。 4.2 系统安全:支持系统访问控制、身份验证、权限控制等安全措施。 5. 可用性需求 5.1 系统可靠性:支持高可靠性、高可用性的数据抽取、转换、加载流程。 5.2 系统可扩展性:支持系统水平扩展、垂直扩展等扩展方式,满足数据规模增长的需求。 5.3 系统可维护性:支持系统监控、日志记录、故障诊断等功能,方便系统运维维护。 6. 非功能需求 6.1 易用性:支持可视化操作,提供直观的数据抽取、转换、加载界面。 6.2 可定制性:支持可扩展的插件机制,方便用户扩展系统功能。 6.3 可配置性:支持灵活的配置方式,方便用户根据业务需求进行配置。 7. 风险约束 7.1 数据质量:数据质量是银行数据集市项目的重要风险因素,需要在ETL开发过程中重视数据质量控制。 7.2 数据安全:数据安全是银行数据集市项目的重要约束因素,需要在ETL开发过程中重视数据安全保护措施。 7.3 时间约束:ETL开发需要按照项目进度要求及时交付,需要合理安排开发进度资源分配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值