高数的笔记

Wallis(华里士)公式/点火公式

∫ 0 π 2 cos ⁡ n t d t = ∫ 0 π 2 sin ⁡ n t d t = { ( 2 k − 1 ) ! ! ( 2 k ) ! ! π 2 , n = 2 k , ( 2 k ) ! ! ( 2 k + 1 ) ! ! , n = 2 k + 1. {\int_0^{\frac\pi2}\cos^nt\mathrm{d}t=\int_0^{\frac\pi2}\sin^nt\mathrm{d}t}=\begin{cases}\frac{(2k-1)!!}{(2k)!!}\frac\pi2,\quad n=2k,\\\\\frac{(2k)!!}{(2k+1)!!},\quad n=2k+1.&\end{cases} 02πcosntdt=02πsinntdt= (2k)!!(2k1)!!2π,n=2k,(2k+1)!!(2k)!!,n=2k+1.
当 n = 1 时 , \text{当}\mathfrak{n}=1\text{时}, n=1,
∫ 0 π 2 sin ⁡ x d x = ∫ 0 π 2 cos ⁡ x d x = 1 \int_0^{\frac{\pi}{2}}\sin xdx=\int_0^{\frac{\pi}{2}}\cos xdx=1 02πsinxdx=02πcosxdx=1
推广
∫ 0 π sin ⁡ n x d x = 2 ∫ 0 π 2 sin ⁡ n x d x \int_0^\pi\sin^n\mathrm{x}\mathrm{dx}=2\int_0^{\frac\pi2}\sin^n\mathrm{x}\mathrm{dx} 0πsinnxdx=202πsinnxdx
∫ 0 π cos ⁡ n x d x = { 2 ∫ 0 π 2 cos ⁡ n x d x , n 为偶数 0 , n 为奇数 \int_0^\pi\cos^nxdx=\begin{cases}2\int_0^{\frac\pi2}\cos^nxdx,&n\text{为偶数}\\0,&n\text{为奇数}\end{cases} 0πcosnxdx={202πcosnxdx,0,n为偶数n为奇数

∫ 0 2 π sin ⁡ n x d x = ∫ 0 2 π cos ⁡ n x d x = { 4 ∫ 0 π 2 sin ⁡ n x d x , n 为偶数 0 , n 为奇数 \int_0^{2\pi}\sin^nxdx=\int_0^{2\pi}\cos^nxdx=\begin{cases}4\int_0^{\frac\pi2}\sin^nxdx,&n\text{为偶数}\\0,&n\text{为奇数}\end{cases} 02πsinnxdx=02πcosnxdx={402πsinnxdx,0,n为偶数n为奇数

区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^bf\left(x\right)\mathrm{d}x=\int_a^bf\left(a+b-x\right)\mathrm{d}x abf(x)dx=abf(a+bx)dx
证明:
∫ a b f ( x ) d x → 令 x = a + b − t ∫ b a f ( a + b − t ) ( − 1 ) d t = − ∫ b a f ( a + b − t ) d t = ∫ a b f ( a + b − t ) d t = ∫ a b f ( a + b − x ) d x \begin{aligned}\int_a^bf(x)dx&\xrightarrow{令 x=a+b{-t}}\int_b^af(a+b-t)(-1)dt=-\int_b^af(a+b-t)dt\\&=\int_a^bf(a+b-t)dt=\int_a^bf(a+b-x)dx\end{aligned} abf(x)dxx=a+bt baf(a+bt)(1)dt=baf(a+bt)dt=abf(a+bt)dt=abf(a+bx)dx
推论

∫ a b f ( x ) d x = 1 2 ∫ a b ( f ( x ) + f ( a + b − x ) ) d x \int_{a}^{b}f(x)dx=\frac{1}{2}\int_{a}^{b}(f(x)+f(a+b-x))dx abf(x)dx=21ab(f(x)+f(a+bx))dx

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)\mathrm{d}x=\frac{\pi}{2}\int_0^\pi f(\sin x)\mathrm{d}x=\pi\int_0^{\frac{\pi}{2}}f(\sin x)\mathrm{d}x 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^{a}f(x)dx=\int_{0}^{a}[f(x)+f(-x)]dx aaf(x)dx=0a[f(x)+f(x)]dx
∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int_0^{\frac\pi2}f(\sin x)\mathrm{d}x=\int_0^{\frac\pi2}f(\cos x)\mathrm{d}x 02πf(sinx)dx=02πf(cosx)dx

stolz(施笃兹)定理

{ x n } \{x_n\} {xn}, { y n } \{y_n\} {yn}为数列,且 { y n } \{y_n\} {yn}严格单调地趋于 + ∞ +\infty +,如果

lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = A \lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A nlimynyn1xnxn1=A


lim ⁡ n → ∞ x n y n = A \lim_{n\to\infty}\frac{x_n}{y_n}=A nlimynxn=A

设数列 { y n } \{y_n\} {yn}严格单调递减趋于0,数列 { x n } \{x_n\} {xn}也收敛到0.如果

lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = A \lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=A nlimynyn1xnxn1=A

lim ⁡ n → ∞ x n y n = A \lim_{n\to\infty}\frac{x_n}{y_n}=A nlimynxn=A

重要极限推论

lim ⁡ x → x 0 ( 1 + f ( x ) ) g ( x ) = lim ⁡ x → x 0 e g ( x ) ln ⁡ ( 1 + f ( x ) ) = lim ⁡ x → x 0 e g ( x ) f ( x ) \lim_{x\rightarrow x_0}\left( 1+f\left( x \right) \right) ^{g\left( x \right)}=\lim_{x\rightarrow x_0}e^{g\left( x \right) \ln \left( 1+f\left( x \right) \right)}=\lim_{x\rightarrow x_0}e^{g\left( x \right) f\left( x \right)} xx0lim(1+f(x))g(x)=xx0limeg(x)ln(1+f(x))=xx0limeg(x)f(x)
其中
lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = ∞ \lim_{x\rightarrow x_0}f\left( x \right) =0,\lim_{x\rightarrow x_0}g\left( x \right) =\infty xx0limf(x)=0,xx0limg(x)=

特殊的分部积分

∫ e a x sin ⁡ b x d x = 1 a 2 + b 2 ∣ d d x e a x d d x sin ⁡ b x e a x sin ⁡ b x ∣ + C = a s i n ( b x ) − b c o s ( b x ) a 2 + b 2 e a x + C \int e^{ax}\sin bxdx=\frac1{a^2+b^2}\begin{vmatrix}\frac d{dx}e^{ax}&\frac d{dx}\sin bx\\e^{ax}&\sin bx\end{vmatrix}+C=\frac{asin\left(bx\right)-bcos\left(bx\right)}{a^2+b^2}e^{ax}+C eaxsinbxdx=a2+b21 dxdeaxeaxdxdsinbxsinbx +C=a2+b2asin(bx)bcos(bx)eax+C
∫ e a x cos ⁡ b x d x = 1 a 2 + b 2 ∣ d d x e a x d d x cos ⁡ b x e a x cos ⁡ b x ∣ + C = b s i n ( b x ) + a c o s ( b x ) a 2 + b 2 e a x + C \left.\int e^{ax}\cos bxdx=\frac{1}{a^2+b^2}\left|\begin{array}{cc}\frac{d}{dx}e^{ax}&\frac{d}{dx}\cos bx\\e^{ax}&\cos bx\end{array}\right.\right|+C=\frac{bsin\left(bx\right)+acos\left(bx\right)}{a^2+b^2}e^{ax}+C eaxcosbxdx=a2+b21 dxdeaxeaxdxdcosbxcosbx +C=a2+b2bsin(bx)+acos(bx)eax+C
表格法
∫ u ν ( n + 1 ) d x = u ν ( n ) − u ′ ν ( n − 1 ) + u ′ ′ ν ( n − 2 ) − u ′ ′ ′ ν ( n − 3 ) + Λ + ( − 1 ) n + 1 ∫ u ( n + 1 ) ν d x \int u\nu^{(n+1)}dx=u\nu^{(n)}-u^{\prime}\nu^{(n-1)}+u^{\prime\prime}\nu^{(n-2)}-u^{\prime\prime\prime}\nu^{(n-3)}+\Lambda+(-1)^{n+1}\int u^{(n+1)}\nu dx uν(n+1)dx=uν(n)uν(n1)+u′′ν(n2)u′′′ν(n3)+Λ+(1)n+1u(n+1)νdx

在这里插入图片描述
在这里插入图片描述

例题
∫ e 2 x x 3 d x \int e^{2x}x^3dx e2xx3dx
在这里插入图片描述

数列累加极限转换为定积分

lim ⁡ n → ∞ ∑ i = 1 n f ( i n ) 1 n = ∫ 0 1 f ( x ) d x \lim_{n\to\infty}\sum_{i=1}^nf(\frac in)\frac1n=\int_0^1f(x)dx nlimi=1nf(ni)n1=01f(x)dx
一般形式
lim ⁡ n → ∞ b − a n ∑ i = 1 n f ( a + b − a n i ) = ∫ a b f ( x ) d x \lim_{n\to\infty}\frac{b-a}n\sum_{i=1}^{n}f(a+\frac{b-a}ni)=\int_{a}^{b}f\left(x\right)\mathrm{d}x nlimnbai=1nf(a+nbai)=abf(x)dx
或者
lim ⁡ n → ∞ b − a n ∑ i = 0 n − 1 f ( a + b − a n i ) = ∫ a b f ( x ) d x \lim\limits_{n\to\infty}\frac{b-a}{n}\sum\limits_{i=0}^{n-1}f\left(a+\frac{b-a}{n}i\right)=\int_{a}^{b}f\left(x\right)\mathrm{d}x nlimnbai=0n1f(a+nbai)=abf(x)dx

求渐近线

  1. 渐近线的定义

若曲线y=f(x)上的动点 M 沿曲线无限地远离原点时,点M与某固定的直线L的距离趋向于0,则L是y=f(x)的渐近线。

  1. 渐近线的分类
  • 水平渐近线

lim ⁡ x → ∞ f ( x ) = b \lim_{x\to\infty}f(x)=b limxf(x)=b,则曲线y=f(x)有水平渐近线 y= b
(即先考虑 x → ± ∞ x\rightarrow\pm\infty x± 时是否存在极限,来判定水平渐近线)

  • 垂直渐近线(铅直渐近线)

lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x\to x_{0}}f(x)=\infty limxx0f(x)=,则曲线 y = f ( x ) y=f(x) y=f(x)有垂直(铅直)渐近线 x = x 0 x=x_{0} x=x0
(即再考虑 x → x 0 + x\to x_{0}^+ xx0+ x → x 0 − x\to x_{0}^- xx0。时是否极限为无穷,一般该 x 0 x_{0} x0为无定义点或其它)

  • 斜渐近线

若 lim ⁡ x → ∞ f ( x ) x = a ≠ 0 , lim ⁡ x → ∞ [ f ( x ) − a x ] = b , 则 y = a x + b  为  y = f ( x ) 的一条斜渐近线 \text{若}\lim_{x\to\infty}\frac{f(x)}{x}=a\neq0,\lim_{x\to\infty}\left[f(x)-ax\right]=b,\\ 则y=ax+b\text{ 为 }y=f(x)\text{的一条斜渐近线} xlimxf(x)=a=0,xlim[f(x)ax]=b,y=ax+b  y=f(x)的一条斜渐近线

  1. 一些有关渐近线的技巧
  • 若y=f(x)的每一点都有定义,则无垂直渐近线

  • 水平+斜渐近线 ≤ 2 \leq2 2条(斜渐近线也可能有2条)

  • 垂直渐近线可能有无穷多条 ( y = tan ⁡ x ) (y=\tan x) (y=tanx)
    在这里插入图片描述

积化和差与和差化积

积化和差
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{gathered} \sin\alpha\cos\beta=\frac12[\sin(\alpha+\beta)+\sin(\alpha-\beta)] \\ \cos\alpha\sin\beta=\frac12[\sin(\alpha+\beta)-\sin(\alpha-\beta)] \\ \cos\alpha\cos\beta=\frac12[\cos(\alpha+\beta)+\cos(\alpha-\beta)] \\ \sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] \end{gathered} sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]
和差化积

帅+帅=帅哥, ( sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 ) 帅-帅=哥帅 , ( sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 ) 哥+哥=哥哥, ( cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 ) 哥-哥=负嫂嫂, ( cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 ) \begin{gathered} \text{帅+帅=帅哥,}(\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}2{\cos\frac{\alpha-\beta}2}) \\ \text{帅-帅=哥帅},(\sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}2{\sin\frac{\alpha-\beta}2}) \\ \text{哥+哥=哥哥,}(\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}2{\cos\frac{\alpha-\beta}2}) \\ \text{哥-哥=负嫂嫂,}(\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}2\sin\frac{\alpha-\beta}2) \end{gathered} +=帅哥,(sinα+sinβ=2sin2α+βcos2αβ)-=哥帅,(sinαsinβ=2cos2α+βsin2αβ)+=哥哥,(cosα+cosβ=2cos2α+βcos2αβ)-=负嫂嫂,(cosαcosβ=2sin2α+βsin2αβ)

导数公式

( 1 ) ( C ) ′ = 0 \left(1\right)\left(C\right)^{\prime}=0 (1)(C)=0,
( 2 ) ( x μ ) ′ = μ x μ − 1 \left(2\right)\left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} (2)(xμ)=μxμ1,
( 3 ) ( sin ⁡ x ) ′ = cos ⁡ x   , (3)\left(\sin x\right)^{\prime}=\cos x\:, (3)(sinx)=cosx,
( 4 ) ( cos ⁡ x ) ′ = − sin ⁡ x   (4)\left(\cos x\right)^{\prime}=-\sin x\: (4)(cosx)=sinx,
( 5 ) ( tan ⁡ x ) ′ = sec ⁡ 2 x (5)(\tan x)^{\prime}=\sec^2x (5)(tanx)=sec2x ,
( 6 ) ( cot ⁡ x ) ′ = − csc ⁡ 2 x (6)(\cot x)^{\prime}=-\csc^2x (6)(cotx)=csc2x ,
( 7 ) ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , (7)(\sec x)^{\prime}=\sec x\tan x, (7)(secx)=secxtanx,
( 8 ) ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (8)(\csc x)^{\prime}=-\csc x\cot x (8)(cscx)=cscxcotx,
( 9 ) ( a x ) ′ = a x ln ⁡ a , (9)\left(a^{x}\right)^{\prime}=a^{x}\ln a, (9)(ax)=axlna,
( 10 ) ( e x ) ′ = e x (10)\left(e^{x}\right)^{\prime}=e^{x} (10)(ex)=ex,
( 11 ) ( log ⁡ a x ) ′ = 1 x ln ⁡ a , (11)\left(\log_{a}x\right)^{\prime}=\frac{1}{x\ln a}, (11)(logax)=xlna1,
( 12 ) ( ln ⁡ x ) ′ = 1 x (12)\left(\ln x\right)^{\prime}=\frac{1}{x} (12)(lnx)=x1,
( 13 ) ( arcsin ⁡ x ) ′ = 1 1 − x 2 \left(13\right)\left(\arcsin x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} (13)(arcsinx)=1x2 1,
( 14 ) ( arccos ⁡ x ) ′ = − 1 1 − x 2 \left(14\right)\left(\arccos x\right)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} (14)(arccosx)=1x2 1,
( 15 ) ( arctan ⁡ x ) ′ = 1 1 + x 2 (15)\left(\arctan x\right)^{\prime}=\frac{1}{1+x^{2}} (15)(arctanx)=1+x21,
( 16 ) ( arctan ⁡ x ) ′ = − 1 1 + x 2 . (16)(\arctan x)^{\prime}=-\frac{1}{1+x^{2}}. (16)(arctanx)=1+x21.

等价无穷小

当 x → 0  时, sin ⁡ x ∼ x 1 − cos ⁡ x ∼ 1 2 x 2 tan ⁡ x ∼ x arctan ⁡ x ∼ x a r c s i n x ∼ x a x − 1 ∼ x ln ⁡ a ln ⁡ ( 1 + x ) ∼ x ( 1 + β x ) α − 1 ∼ a β x log ⁡ d ( 1 + x ) ∼ x ln ⁡ a x − sin ⁡ x ∼ x 3 6 a x − 1 ∼ x ln ⁡ a ln ⁡ ( 1 + x ) ∼ x 1 + x − 1 − x ∼ x ( 1 + a x ) b − 1 ∼ a b x 1 + a x b − 1 ∼ a b x \begin{aligned} \text{当}x\to0\text{ 时,} \\ &\sin x\sim x \\ &1-\cos x\sim{\frac{1}{2}}x^{2} \\ &\tan x\sim x \\ &\arctan x\sim x \\ &arcsinx\sim x \\ &a^{x}-1\sim x\ln a \\ &\ln(1+x)\sim x \\ &(1+\beta x)^{\alpha}-1\sim a\beta x \\ &\log_{d}(1+\mathbf{x})\sim{\frac{x}{\ln a}} \\ &x-\sin x\sim{\frac{x^{3}}{6}} \\ &a^x-1\sim x\ln a \\ &\ln(1+x)\sim x \\ &\sqrt{1+x}-\sqrt{1-x}\sim x \\ &\left(1+ax\right)^b-1\sim abx \\ &\sqrt[b]{1+ax}-1\sim\frac abx \end{aligned} x0 ,sinxx1cosx21x2tanxxarctanxxarcsinxxax1xlnaln(1+x)x(1+βx)α1aβxlogd(1+x)lnaxxsinx6x3ax1xlnaln(1+x)x1+x 1x x(1+ax)b1abxb1+ax 1bax

泰勒公式

e x = l + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + o ( x 4 ) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + o ( x 4 ) 1 1 − x = 1 + x + x 2 + x 3 + x 4 + o ( x 4 ) 1 1 + x = 1 − x + x 2 − x 3 + x 4 + o ( x 4 ) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + o ( x 3 ) sin ⁡ x = x − x 3 3 ! + x 5 5 ! + o ( x 5 ) cos ⁡ x   =   1   −   x 2 2 !   +   x 4 4 !   +   o   (   x 4   ) tan ⁡ x = x + x 3 3 + 2 x 5 15 + o ( x 5 ) a r c s i n   x = x + x 3 3 ! + o ( x 3 ) arctan ⁡ x = x − x 3 3 + x 5 5 + o ( x 5 ) \begin{aligned} &\mathbf{e}^{x}=\mathbf{l}+\mathbf{x}+{\frac{\mathbf{x}^{2}}{2!}}+{\frac{\mathbf{x}^{3}}{3!}}+{\frac{\mathbf{x}^{4}}{4!}}+o\left(x^{4}\right) \\ &\ln(1+x)=x-{\frac{\mathbf{x}^{2}}{2}}+{\frac{\mathbf{x}^{3}}{3}}-{\frac{\mathbf{x}^{4}}{4}}+o\left(x^{4}\right) \\ &\frac{1}{1-x}=1+x+x^{2}+\mathbf{x}^{3}+\mathbf{x}^{4}+o\left(x^{4}\right) \\ &\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}+o\left(x^{4}\right) \\ &\left(1+x\right)^a=1+ax+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+o\left(x^3\right) \\ &\sin\mathbf{x}\mathbf{=}\mathbf{x}-{\frac{\mathbf{x}^{3}}{3!}}+{\frac{\mathbf{x}^{5}}{5!}}+o{\big(}x^{5}{\big)} \\ &\cos\mathbf{x}\:=\:\mathbf{1}\:-\:\frac{\mathbf{x}^{2}}{2!}\:+\:\frac{\mathbf{x}^{4}}{4!}\:+\:o\:\left(\:x^{4}\:\right) \\ &\tan\mathbf{x}=\mathbf{x}+{\frac{\mathbf{x}^{3}}{3}}+{\frac{2\mathbf{x}^{5}}{15}}+o\left(x^{5}\right) \\ &\mathrm{arcsin~x=x+\frac{x^{3}}{3!}}+o\left(x^{3}\right) \\ &\arctan\mathbf{x}\mathbf{=x}-\frac{\mathbf{x}^{3}}{3}+\frac{\mathbf{x}^{5}}{5}+o\left(x^{5}\right) \end{aligned} ex=l+x+2!x2+3!x3+4!x4+o(x4)ln(1+x)=x2x2+3x34x4+o(x4)1x1=1+x+x2+x3+x4+o(x4)1+x1=1x+x2x3+x4+o(x4)(1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+o(x3)sinx=x3!x3+5!x5+o(x5)cosx=12!x2+4!x4+o(x4)tanx=x+3x3+152x5+o(x5)arcsin x=x+3!x3+o(x3)arctanx=x3x3+5x5+o(x5)

变限积分函数求导

  • 最常见的变限积分函数求导

当被积函数里面只有t变量时,求导公式就是下面的几种
( 1 ) ( ∫ a x f ( t ) d t ) ′ = f ( x ) ( 2 ) ( ∫ a u ( x ) f ( t ) d t ) ′ = f ( u ( x ) ) u ′ ( x ) ( 3 ) ( ∫ ν ( x ) b f ( t ) d t ) ′ = − f ( ν ( x ) ) ν ′ ( x ) ( 4 ) ( ∫ ν ( x ) u ( x ) f ( t ) d t ) ′ = f ( u ( x ) ) u ′ ( x ) − f ( v ( x ) ) v ′ ( x ) \begin{aligned} &(1)(\int_a^xf(t)dt)^{\prime}=f(x) \\ &(2)(\int_a^{u(x)}f(t)dt)^{\prime}=f(u(x))u^{\prime}(x) \\ &(3)(\int_{\nu(x)}^bf(t)dt)^{\prime}=-f(\nu(x))\nu^{\prime}(x) \\ &(4)\left(\int_{\nu(x)}^{u(x)}f(t)dt\right)^{\prime}=f(u(x))u^{\prime}(x)-f(v(x))v^{\prime}(x) \end{aligned} (1)(axf(t)dt)=f(x)(2)(au(x)f(t)dt)=f(u(x))u(x)(3)(ν(x)bf(t)dt)=f(ν(x))ν(x)(4)(ν(x)u(x)f(t)dt)=f(u(x))u(x)f(v(x))v(x)

  • 被积函数中有x作为乘积因子时
    被积函数有x因子,此时的积分变量为t,所以x相对于t来说就是常数,可以将x提到积分号外面,然后再对x求导,就变成了函数乘积的求导公式
  • 被积函数是复合函数,而复合函数内层有x变量
    ∫ 0 x f ( x − t ) d t = − ∫ 0 x f ( x − t ) d ( x − t ) = ⁡ 令 x − t = u 当 t = 0 , u = x t = x , u = 0 − ∫ x 0 f ( u ) d ( u ) = ∫ 0 x f ( u ) d ( u ) \int_0^xf(x-t)dt=-\int_0^xf(x-t)d(x-t)\overset{\begin{aligned}\text{令}&x-t=u\\\text{当}&t=0,u=x\\&t=x,u=0\end{aligned}}{\operatorname*{=}}-\int_x^0f(u)d(u)=\int_0^xf(u)d(u) 0xf(xt)dt=0xf(xt)d(xt)=xt=ut=0,u=xt=x,u=0x0f(u)d(u)=0xf(u)d(u)

∫ 0 x t f ( x 2 − t 2 ) d t = − 1 2 ∫ 0 x f ( x 2 − t 2 ) d ( x 2 − t 2 ) = ⁡ 令 x 2 − t 2 = u 当 t = 0 , u = x 2 t = x , u = 0 − 1 2 ∫ x 2 0 f ( u ) d ( u ) = 1 2 ∫ 0 x 2 f ( u ) d ( u ) \int_0^xtf(x^2-t^2)dt=-\left.\frac12\int_0^xf(x^2-t^2)d(x^2-t^2)\right.\overset{\begin{aligned}\text{令}x^2-t^2&=u\\\text{当}t&=0,u=x^2\\t&=x,u=0\end{aligned}}{\operatorname*{=}}-\frac12\int_{x^2}^0f(u)d(u)=\frac12\int_0^{x^2}f(u)d(u) 0xtf(x2t2)dt=210xf(x2t2)d(x2t2)=x2t2tt=u=0,u=x2=x,u=021x20f(u)d(u)=210x2f(u)d(u)

  • 二重积分方法求解
  • 25
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值