1、大纲 2.常用的等价无穷小 3、常用结论 4、利用等价无穷小替换极限 5、利用有理运算法则求极限 6、型常用理论 7、泰勒公式求极限 8、讨论间断点例题 9、导数与微分的几何意义 10、导数公式及求导法则 11、高阶导数 12、斜渐近线、曲率、曲率半径 13、求斜渐近线的另一种方式 14、零点定理、罗尔定理例题 15、原函数存在定理 16、不定积分基本公式 17、部分积分法 18、三种积不出的函数 19、三角有理式积分 20、简单无理函数积分 21、求原函数举例 22、定积分性质 23、积分上限的函数 24、求定积分举例 25、变上限积分例题 26、收敛//发散 比较法 27、积分在几何上的运用 28、切线方程的写法、形心 29、线性微分方程的解的结构 30、一阶微分方程 31、可降阶的微分方程 32、多元函数的连续性 33、高阶偏导数 34、全微分 34、连续、可偏导、可微联系 35、复合函数、隐函数微分法 36、求极值 37、二重积分 38、原函数与导数的奇偶性、周期性关系 39、有界性 40、分左右极限求极限 41、局部保号性、有界性 42、无穷小的性质、无穷大 43、基本极限求极限 44、无穷 - 无穷类型求极限 45、无穷 / 无穷类型求极限 46、0 / 0类型求极限 47、1 无穷次方型求极限 48、0*无穷型求极限 49、其他类型求极限 50、n项和的数列求极限 51、何时用夹逼、何时用定积分 52、n项连乘的数列求极限 53、递推求极限 54、判断原函数在某点是否可导的充要条件 55、f(x) 与 |f(x)| 的可导、连续关系 56、极值的充分条件 57、方程根的存在性及其个数 证明方法 58、微分中值定理有关证明题 59、构造辅助函数 60、证明存在两点 61、证明存在一个中值点 62、三种主要的积分法 63、定积分的存在性质 64、变上限积分函数及应用 65、F(x) -- f(x) -- f(x)导数关系 66、多元函数求极值 67、多元函数连续性质 68、全微分 错题 1、定积分的变量代换 2、不定积分的公式 3、全微分的定义题 4、保号性 5、单调有界 6、f(x)连续,导数大与0相关结论 7、不等式证收敛 8、变限积分求极限 9、数列求极限用到洛必达时需转换成函数求极限 10、判断变限积分大小相关结论 11、导数定义求极限 12、导数的可积、连续与其原函数的关系 13、定积分的计算 14、区间不变 15、变上限积分证明题 16、通过极限求原函数(导数定义) 17、微分方程证明题