天才的记忆(RMQ问题)(ST算法)

acwing-天才的记亿

从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏。

在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。

题目是这样的:给你一大串数字(编号为 1 到 N ,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你 M 个询问,每次询问就给你两个数字 A,B ,要求你瞬间就说出属于 A 到 B 这段区间内的最大数。

一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。

但是,她每次都以失败告终,因为这数字的个数是在太多了!

于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

输入格式
第一行一个整数 N 表示数字的个数。

接下来一行为 N 个数,表示数字序列。

第三行读入一个 M ,表示你看完那串数后需要被提问的次数。

接下来 M 行,每行都有两个整数 A,B 。

输出格式
输出共 M 行,每行输出一个数,表示对一个问题的回答。

数据范围
1≤N≤2×105 ,
1≤M≤104
输入样例:

6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3

输出样例:

34
123
123
8

这个题是一个标准的RMQ问题,解决这个问题的标准算法就是ST稀疏表算法
什么是RMQ问题:
RMQ问题是指给定一个范围,让你求最大值或最小值。那这简单啊,遍历一边不就完了。可问题是当数据和提问的次数均很大是,遍历显然会超时!

那么怎么去求呢,运用ST算法:
首先要定义二维辅助数组st[i][j],表示的时从i开始的2^j个数内最大值。
构造:
要求解st[i][j]时,即求下标i开始,长度为2^j 的子数组的最小值时,可以把这段子数组再划分成两半,每半的长度为2^(j-1) ,于是前一半的最小值为st[i][j-1],后一半的最小值为st[i+2^(j-1)][j-1],于是动态规划的转移方程为:st[i][j] = min(st[i][j-1], st[i+2^(j-1) ][j-1])长度为2^j 的情况只和长度为2^(j-1) 的情况有关,只需要初始化长度为2^0=1的情况即可。而长度为1时的最小值是显然的(为其本身)。
查询:
对于区间范围j,k;我们只需令z=log2(k-j+1)。z即是j,k中以2^n次方分开来的二等分点。
再求max(st[j][z],st[k-(1<<z)+1][z]) 即为区间内的最值。
尽管这两个区间会重叠,但我们只需求出最值即可。
见代码:

#include "bits/stdc++.h"
using namespace std;
int st[500000][20],n,m;
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>st[i][0];//初始状态,即i到2^0=1个数,即它本身
    }
    for(int j=1;(1<<j)<=n;j++)
    {
        for(int i=1;i<=n;i++)
        {
            st[i][j]=max(st[i][j-1],st[i+(1<<j-1)][j-1]);//每次都将其拆成两段来求解
        }
    }
    cin>>m;
    while(m--)
    {
        int j,k,z;
        cin>>j>>k;
        z=log2(k-j+1);
        cout<<max(st[j][z],st[k-(1<<z)+1][z])<<endl;
    }
}

所以通过ST算法,我们可以解决RMQ类问题,cheer!
我是阡陌,一个在打ACM的业余选手。如果你喜欢这篇博客,就点个赞再走吧!

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

indolence-阡陌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值