体系结构论文导读(二十七):Mixed Precision Quantization for ReRAM-based DNN Inference Accelerators

Mixed Precision Quantization for ReRAM-based DNN Inference Accelerators

基于 ReRAM 的 DNN 推理加速器的混合精度量化

一、文章要点

  • 背景:ReRAM交叉阵列能高效地执行MVM操作,但ADC的高能量和面积消耗是一个主要问题。
  • 问题:传统的量化流程未考虑部分和量化,这在ReRAM架构中非常重要。
  • 解决方案:提出了一种混合精度量化方案,联合对每层DNN的权重、输入和部分和进行量化,并使用深度强化学习自动搜索最佳量化配置。
  • 效果:该方案能显著减少推理延迟和能量消耗,且仅损失1.18%的推理精度。
ReRAM交叉阵列的工作原理
  1. 权重表示:权重存储在ReRAM单元中,每个单元的电导表示权重值。
  2. 输入信号:输入信号通过DAC转换为模拟电压,施加到交叉阵列的行上。
  3. 输出信号:交叉阵列的列上产生电流,代表矩阵-向量乘积的结果。
  4. ADC转换:输出电流通过ADC转换为数字信号。
为什么要量化?
  1. 减少存储需求:量化可以将权重和输入从高精度表示(如32位浮点数)转换为低精度表示(如8位整数),大大减少存储空间。
  2. 提高计算效率:低精度运算比高精度运算更快&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D了一天bug忘了编译

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值