树莓派4B:Yolov5环境配置及摄像头实时目标检测----装完就后悔了

首先声明一下,本文章默认你的树莓派已经烧录好了带桌面的操作系统(当然其他的Linux系统也行)
再声明一下:
图片看上去很好对吧
实际帧率只有1-2帧,极致的ppt享受!
请添加图片描述

一、先换源

1.用这个换源

这行代码的作者是鱼香ROS,他这行代码可以一键安装很多东西。
这里我们使用他换一下源,同时安装一下vscode,
终端输入:

wget http://fishros.com/install -O fishros && . fishros

vscode怎么运行?
找个终端,输入

code

在vscode里面装c(这个可以不装),python
这些都是必要步骤,不要省略
不知道如何安装?
vscode打开以后,点击我圈起来的1.部分
然后在2.处输入需要下载的C/C++、python、顺便也可以把chinese也下了,免得英语看不懂。
请添加图片描述

2.更新一下

以上搞完以后,在终端输入:

sudo apt-get update

sudo apt-get upgrade

3.创建一个虚拟环境

python3 -m venv myenv

这将创建一个名为 myenv 的虚拟环境文件夹。

激活虚拟环境:

source myenv/bin/activate

激活以后可以看到终端的最前面出现了(myenv)…即可

二、安装OpenCV

接着还是那个终端,输入:

python -m pip install opencv-python

有些库等要用到了再装

测试一下:

找个终端,输入

python3

然后输入

import  cv2

如果没有报错就安装好了

三、安装miniconda

先看一下版本是64位还是32位

uname -m

如果输出是 aarch64,则表示你的系统是 64 位,适合使用 aarch64 版本的 Miniconda。如果是 armv7l,则表示你的操作系统是 32 位的,这时你需要安装 32 位版本的 Miniconda。

下载 Miniconda

可以直接使用 wget 下载适合架构的 Miniconda 安装包。例如:

64位:aarch64

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh

32位:armv7l

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-armv7l.sh

安装 Miniconda

下载完成后,给安装包添加执行权限并运行它:

chmod +x Miniconda3-latest-Linux-aarch64.sh

./Miniconda3-latest-Linux-aarch64.sh

然后按照安装提示完成安装。

注意:运行./Miniconda3-latest-Linux-aarch64.sh后可能会出现一些许可协议,遇到yes按yes,遇到enter按enter即可

一直卡在协议里面出不来可以直接输入yes试试,不行就ctrl+c退出

默认路径是/home/username/miniconda3,要更改路径的话直接在命令行输入你想要的路径然后按下enter

安装完成后,你会看到类似如下的提示:

Miniconda3 has been successfully installed!

测试一下:

找个终端输入:

conda --version

如果安装成功,可以看到版本号:

conda 23.1.0

初始化 Miniconda

安装完成后,你可以初始化 Miniconda 以便在终端中使用:

conda init

四、安装pytorch

树莓派GPU效果不好,我们简单一点安装一个cpu版本的

1.先换一下conda的源:

1. 查看当前 Conda 源

首先,你可以查看当前 Conda 使用的源:

conda config --show channels

这会显示你当前配置的源列表。默认情况下,Conda 会使用 defaults 通道。

2. 更换为国内镜像源

配置清华大学镜像源

清华大学提供的 Conda 镜像是一个常用且稳定的源。你可以使用以下命令来更改 Conda 源为清华镜像:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
conda config --set show_channel_urls yes

配置中科大镜像源

中科大(USTC)也提供了 Conda 的镜像。你可以使用以下命令来更换为中科大的镜像源:

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/r/
conda config --set show_channel_urls yes

配置阿里云镜像源

阿里云提供的 Conda 镜像也相当不错。使用以下命令更换为阿里云的源:

conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/r/
conda config --set show_channel_urls yes

3. 删除无效的源

如果你不再需要默认的源,可以使用以下命令将其删除:

conda config --remove channels defaults

4. 配置后验证

配置完镜像源后,你可以通过以下命令检查当前的源配置:

conda config --show channels

你应该能看到镜像源已经被更改为你选择的源。

5. 清理缓存

有时,你可能需要清理 Conda 缓存,以确保从新源重新下载包:

conda clean -i

这会清除索引缓存,并强制 Conda 从新的源重新索引包。

2.pytorch cpu版本

一般要先在conda上创建一个运行的虚拟环境

conda create -n yolov5 python=3.9 

conda activate yolov5 

用conda安装torch

conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c conda-forge

如果conda一直安装失败可以用pip安装,但是要在conda刚创建的环境下

pip install torch torchvision torchaudio

测试一下:

在终端下输入

python3

然后输入:

import torch
print(torch.cuda.is_available())

如果输出true,则安装的是GPU版本的

如果是false,则安装的是CPU版本的

我们安装的是CPU版本的,所以应该返回false

或者:

再找一个终端输入:

pip show torch

会显示已安装的 PyTorch 包的详细信息,包括安装的版本、安装路径等。

五、安装yolov5

安装 YOLOv5 和其他必要的依赖项。

首先,

克隆 YOLOv5 仓库并进入项目目录:

git clone https://github.com/ultralytics/yolov5.git
cd yolov5

然后,

安装 YOLOv5 的 Python 依赖:

pip install -U -r requirements.txt

全部安装完以后,测试一下能不能用:
先去官网下载一个yolov5nu.pt的权重文件
https://docs.ultralytics.com/zh/models/yolov5/
请添加图片描述

再用vscode新建一个my_yolo.py文件
例如我要用摄像头实现实时目标检测:

import cv2
from ultralytics import YOLO

model = YOLO("/home/cjl/yolov5/yolov5nu.pt")#这个路径是你刚才下载的权重文件的路径
# 或者你也可以这样写
# model = YOLO('yolov5nu.pt') #这样yolov5会自动从官网下载

cap = cv2.VideoCapture(0) #打开摄像头,0代表默认摄像头,没有摄像头会报错

while cap.isOpened():
    success, frame = cap.read()
    if not success:
        break    
    
	#限制输出图像的大小
    scale_percent = 50   
    width = int(frame.shape[1] * scale_percent / 100)
    height = int(frame.shape[0] * scale_percent / 100)
    dim = (width, height)
    resized_frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
    
   	#conf表示置信度,iou表示交并比
    results = model(resized_frame, conf=0.4, iou=0.3)
   
    annotated_frame = results[0].plot()
 
    cv2.imshow("YOLOv5", annotated_frame)
	
	#按ESC键退出
    if cv2.waitKey(1) & 0xFF == 27:
        break

cap.release()
cv2.destroyAllWindows()

最后

在vscode下方的终端输入:
请添加图片描述

conda activate yolov5 

进入我们之前创建好的yolov5的环境
然后,运行上面的代码
怎么运行?
一般右上角有一个三角形点一下就好了
或者你可以
请添加图片描述这个路径是你代码存放的路径

效果图:
图片看上去很好对吧
实际帧率估计只有1-2帧,极致的ppt享受!
请添加图片描述
优化思路:
我问了AI,大致就是导出为onnx等模型、缩小输出尺寸等来提高速度
优化方法网上有很多,但是我尝试了一下,实在有点麻烦。。。
如果你要实现在移动机器人或者小车上的目标检测的话,建议换jetson nano,比你在这里捣鼓这个树莓派方便多了。。。

<think>嗯,用户想在树莓派4B上安装Miniconda。首先,我需要回忆一下相关的步骤和可能遇到的问题。根据提供的引用内容,有几个关键点需要注意: 首先,树莓派使用的是ARM架构,特别是aarch64(也就是ARM64)的系统。因此,用户需要下载对应的Miniconda版本。引用[1]和[3]都提到要选择Linux-aarch64版本,并且要特别注意版本号不能太高,超过4.9的版本可能不兼容。引用[1]中推荐的是Miniconda3-py37_4.9.2-Linux-aarch64.sh,用户应该使用这个版本。 接下来是下载和安装步骤。用户需要先下载指定的安装脚本,使用wget命令获取文件。然后执行bash脚本进行安装。安装过程中可能需要确认安装路径和同意许可协议,这部分需要用户根据提示操作。安装完成后,需要激活环境,比如运行source ~/.bashrc或者重启终端,使conda命令生效。 验证安装是否成功可以通过conda -V命令查看版本,如果显示4.9.2就说明安装正确。另外,用户可能需要注意系统的位数,确认是64位系统,否则可能需要不同的安装包。引用[3]强调了这一点,用户需要先用uname -a检查系统架构。 还有可能遇到的问题,比如高版本Miniconda不兼容的问题。引用[2]提到Anaconda可能不兼容,所以推荐使用Miniconda,并且版本不宜过高。这时候需要提醒用户严格按照推荐的版本来操作,避免安装后无法使用。 最后,用户可能需要配置环境变量或者使用清华镜像源来加速下载,但根据引用内容,用户已经提供了具体的下载链接,可能不需要额外步骤。不过,如果遇到下载速度慢的问题,可以考虑更换镜像源,但这里提供的链接已经是清华大学的镜像,应该比较快。 总结步骤应该是:确认系统架构→下载正确版本的Miniconda→执行安装脚本→激活环境→验证安装。同时,提醒用户注意版本兼容性问题,避免使用过高版本的Miniconda导致无法使用。</think>### 在树莓派4B上安装Miniconda的步骤 #### **1. 确认系统架构** 树莓派4B若安装64位系统,需通过以下命令确认架构: ```bash uname -a ``` 输出示例:`aarch64`表示ARM64架构(必须选择对应版本)[^3]。 #### **2. 下载适配的Miniconda版本** - **关键点**:树莓派ARM64架构需选择`Linux-aarch64`版本,且版本需≤4.9.2(高版本存在兼容问题)[^1][^2]。 - 使用清华镜像源下载指定版本: ```bash wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py37_4.9.2-Linux-aarch64.sh ``` #### **3. 执行安装脚本** 运行以下命令并按提示操作(确认安装路径,同意许可证协议): ```bash bash Miniconda3-py37_4.9.2-Linux-aarch64.sh ``` 安装完成后激活环境: ```bash source ~/.bashrc # 或重启终端 ``` #### **4. 验证安装** 检查版本号确认安装成功: ```bash conda -V ``` 输出应为:`conda 4.9.2`[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值