离散数学作业-day5

作业1 定义一个标签分布系统, 即各标签的值不是 0/1, 而是 [ 0 , 1 ] [0,1] [0,1] 区间的实数, 且同一对象的标签和为 1

A multi-label distribution decision system is a tuple S = ( X , Y ) S = (\mathbf{X}, \mathbf{Y}) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X} = [x_{ij}]_{n \times m} \in \mathbb{R}^{n \times m} X=[xij]n×mRn×m is the data matrix, Y = [ y i k ] n × l ∈ [ 0 , 1 ] n × l \mathbf{Y} = [y_{ik}]_{n \times l} \in [0, 1]^{n \times l} Y=[yik]n×l[0,1]n×l is the label matrix, s.t. ∑ t = 1 k y i k = 1 \sum_{t=1}^k y_{ik} = 1 t=1kyik=1, n n n is the number of instances, m m m is the number of features, and l l l is the number of labels.

作业2 找一篇你们小组的论文来详细分析数学表达式, 包括其涵义, 规范, 优点和缺点.

数学表达式:
min ⁡ v ( j ) E ( v ( j ) ) = ∑ i = 1 l L ( y i , g ( j ) ( x i ) ) + ∑ i = l + 1 l + u v i ( j ) L ( g ‾ ( j − 1 ) ( x i ) , g ( j ) ( x i ) ) \min_{ \mathbf{v}^{(j)}} E\left( \mathbf{v}^{(j)}\right)= \sum_{i = 1}^{l} L\left(y_{i}, g^{(j)}(\mathbf{x}_{i})\right) + \sum_{i=l+1}^{l+u}v_{i}^{(j)}L\left(\overline{g}^{(j-1)}{(\mathbf{x}_i)}, g^{(j)}(\mathbf{x}_{i})\right) v(j)minE(v(j))=i=1lL(yi,g(j)(xi))+i=l+1l+uvi(j)L(g(j1)(xi),g(j)(xi))
涵义:在第 j j j个视角上,在输入为 v ( j ) \mathbf{v}^{(j)} v(j)的情况下,使模型在标记数据与伪标记数据上的预测损失最小。
优点:简介明了,变量名为出现混用的情况。
缺点:无法一次性讲整个多个视角之间的优化情况写出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值