作业1 定义一个标签分布系统, 即各标签的值不是 0/1, 而是 [ 0 , 1 ] [0,1] [0,1] 区间的实数, 且同一对象的标签和为 1
A multi-label distribution decision system is a tuple S = ( X , Y ) S = (\mathbf{X}, \mathbf{Y}) S=(X,Y) where X = [ x i j ] n × m ∈ R n × m \mathbf{X} = [x_{ij}]_{n \times m} \in \mathbb{R}^{n \times m} X=[xij]n×m∈Rn×m is the data matrix, Y = [ y i k ] n × l ∈ [ 0 , 1 ] n × l \mathbf{Y} = [y_{ik}]_{n \times l} \in [0, 1]^{n \times l} Y=[yik]n×l∈[0,1]n×l is the label matrix, s.t. ∑ t = 1 k y i k = 1 \sum_{t=1}^k y_{ik} = 1 ∑t=1kyik=1, n n n is the number of instances, m m m is the number of features, and l l l is the number of labels.
作业2 找一篇你们小组的论文来详细分析数学表达式, 包括其涵义, 规范, 优点和缺点.
数学表达式:
min
v
(
j
)
E
(
v
(
j
)
)
=
∑
i
=
1
l
L
(
y
i
,
g
(
j
)
(
x
i
)
)
+
∑
i
=
l
+
1
l
+
u
v
i
(
j
)
L
(
g
‾
(
j
−
1
)
(
x
i
)
,
g
(
j
)
(
x
i
)
)
\min_{ \mathbf{v}^{(j)}} E\left( \mathbf{v}^{(j)}\right)= \sum_{i = 1}^{l} L\left(y_{i}, g^{(j)}(\mathbf{x}_{i})\right) + \sum_{i=l+1}^{l+u}v_{i}^{(j)}L\left(\overline{g}^{(j-1)}{(\mathbf{x}_i)}, g^{(j)}(\mathbf{x}_{i})\right)
v(j)minE(v(j))=i=1∑lL(yi,g(j)(xi))+i=l+1∑l+uvi(j)L(g(j−1)(xi),g(j)(xi))
涵义:在第
j
j
j个视角上,在输入为
v
(
j
)
\mathbf{v}^{(j)}
v(j)的情况下,使模型在标记数据与伪标记数据上的预测损失最小。
优点:简介明了,变量名为出现混用的情况。
缺点:无法一次性讲整个多个视角之间的优化情况写出。