有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。
第 ii 件物品的体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
这应该是继小A点菜后的又一道dp,但是那道题当时犯懒没有写题解,但是大概还记得点思路。
题解
#include<stdio.h>
int w[1005],v[1005];//w[i]代表i的价值,v[i]代表i的体积
int f[1005][1005]; //f[i][j]表示前i个物品在体积为j下的最优解
int main()
{
int i,j,n,m;//n物品数量,m背包体积
scanf("%d %d",&n,&m);
for(i=1;i<=n;i++) scanf("%d %d",&v[i],&w[i]);
for(i=1;i<=n;i++)//从1开始判断到最后一个物品
{
for(j=1;j<=m;j++)//从背包体积为1开始判断到装满背包
{
if(j<v[i])//如果装不下第i个物品了
f[i][j]=f[i-1][j];//那么久延续上一次的装法
else//如果装的下i就装上
f[i][j]=f[i-1][j]>f[i-1][j-v[i]]+w[i]?f[i-1][j]:f[i-1][j-v[i]]+w[i];
//再比较一下装上i和不装i哪个才是最优解,注意这里比较时不一定每次都是后者大的
}
}
printf("%d",f[n][m]);
}
递归解法
#include<stdio.h>
int n,v,max=0;
int a[1000],b[1000];
void dfs(int u,int p,int q)//u装了几个物品,p当前体积,q当前价值
{
if(q>max&&p<=v)
max=q;
if(u>=n||p>v)//注意return条件不一定只有背包溢出的情况,也可能是物品没得放了
{
return;
}
dfs(u+1,p,q);//不装第u个物品
dfs(u+1,p+a[u],q+b[u]);//装第u个物品
}
int main()
{
scanf("%d%d",&n,&v);
for(int i=0;i<n;i++)
{
scanf("%d%d",&a[i],&b[i]);
}
dfs(0,0,0);
printf("%d",max);
}
递归也很暴力,思路也简单,超时也是肯定的,应该有优化的方法,埋个坑回头再写吧