ACwing2. 01背包问题

有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。

第 ii 件物品的体积是 vivi,价值是 wiwi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

这应该是继小A点菜后的又一道dp,但是那道题当时犯懒没有写题解,但是大概还记得点思路。

题解

#include<stdio.h>

int w[1005],v[1005];//w[i]代表i的价值,v[i]代表i的体积
int f[1005][1005]; //f[i][j]表示前i个物品在体积为j下的最优解

int main()
{
	int i,j,n,m;//n物品数量,m背包体积 
	scanf("%d %d",&n,&m);
	for(i=1;i<=n;i++) scanf("%d %d",&v[i],&w[i]);
	for(i=1;i<=n;i++)//从1开始判断到最后一个物品
	{
		for(j=1;j<=m;j++)//从背包体积为1开始判断到装满背包
		{
			if(j<v[i])//如果装不下第i个物品了
			f[i][j]=f[i-1][j];//那么久延续上一次的装法
			else//如果装的下i就装上
			f[i][j]=f[i-1][j]>f[i-1][j-v[i]]+w[i]?f[i-1][j]:f[i-1][j-v[i]]+w[i];
            //再比较一下装上i和不装i哪个才是最优解,注意这里比较时不一定每次都是后者大的
		}
	}
	printf("%d",f[n][m]);
}

递归解法 

#include<stdio.h>

int n,v,max=0;
int a[1000],b[1000];

void dfs(int u,int p,int q)//u装了几个物品,p当前体积,q当前价值
{
    if(q>max&&p<=v)
		max=q;
	if(u>=n||p>v)//注意return条件不一定只有背包溢出的情况,也可能是物品没得放了
	{
		return;
	}
	dfs(u+1,p,q);//不装第u个物品
	dfs(u+1,p+a[u],q+b[u]);//装第u个物品
}

int main()
{
	scanf("%d%d",&n,&v);
	for(int i=0;i<n;i++)
	{
		scanf("%d%d",&a[i],&b[i]);
	}
	dfs(0,0,0);
	printf("%d",max);
}

递归也很暴力,思路也简单,超时也是肯定的,应该有优化的方法,埋个坑回头再写吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值