目录
上期回顾
【李沐 动手学深度学习】视频课程笔记与重点总结 01-18-CSDN博客https://blog.csdn.net/qq_52589927/article/details/141156454?spm=1001.2014.3001.5502还是提醒一下,文章中代码仅作展示。使用的是pytorch框架,在运行代码的时候,不要忘了先导包
import torch
from torch import nn
from d2l import torch as d2l
from torch.nn import functional as F
卷积神经网络
相信大家对卷积都稍微有些了解,就是一个卷积核(权重矩阵)在图片上不断扫描求值,如下动图就是一个3*3的卷积核在5*5的图片上做卷积。
下面会从底层逻辑开始讲起,卷积是怎么出现的
从全连接到卷积
对全连接层(输入和输出为一维向量)使用如下两种性质就会变成卷积层(输入和输出为二维矩阵)
通俗来讲就是:
平移不变性
- 确定卷积核的个数唯一
- 要识别图片上的猫,不管猫在图片的哪个位置,只需要同一个卷积核(权重矩阵)来扫描即可,即卷积核的参数不变,从图中提取到的特征就不变
局限性
- 确定卷积核的大小适当
- 无需整张图一起看,只需要看某一个位置点附近的地方
通过改变卷积核中的参数,可以实现不同目的,如边缘检测,锐化,模糊........
也可以使用一维,三维的数据来做卷积。要注意,输入输出变化的同时,卷积核也会改变维度哦
一维:文本,语言,时序序列
三维:视频,医学图像
卷积的简单公式:
- 输入 X 和 权重矩阵 W(卷积核)交叉相乘,再加上偏移 b,得到输出 Y
- 可学习的参数:W 和 b
- 超参数:W 的大小
图像卷积
实现二维卷积层
class Conv2D(nn.Module): # 继承nn.Module
def __init__(self, kernel_size): # W 的大小
super().__init__()
self.weight = nn.Parameter(torch.rand(kernel_size)) # W 可学习参数
self.bias = nn.Parameter(torch.zeros(1)) # b 可学习参数
def forward(self, x):
return corr2d(x, self.weight) + self.bias # Y = X * W + b
学习卷积核
学习由 X输入 生成 Y输出 的卷积核,无需自己设计卷积核的参数,而是让网络来学习
# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2 # 学习率
# 手搓训练逻辑
for i in range(10):
Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2 # 均方误差作为loss
conv2d.zero_grad() # conv2d的梯度设为0
l.sum().backward()
# 迭代卷积核,梯度下降的方式
conv2d.weight.data[:] -= lr * conv2d.weight.grad
if (i + 1) % 2 == 0:
print(f'epoch {i+1}, loss {l.sum():.3f}')
# 查看这个卷积核的权重tensor
conv2d.weight.data.reshape((1, 2))
填充和步幅
卷积的超参数:填充padding、步幅stride
先讲填充,假设如下情况:
形状减小到 ( 32 - 5 + 1 ) * ( 32 - 5 + 1 ),即第一层输出大小 28 * 28
如此往复,输出结果越来越小,为了防止这一现象的出现,可以采取如下措施:
在输入的周围添加额外的行列,这也就是为什么文章开头的动图中,蓝色方框外还有一圈虚线,那个就是额外添加的padding
如果添加 ph 行填充和 pw 列填充,则输出形状将为:
p:填充padding 、k:卷积核kernel 、n:输入
h:高 、 w:宽
这样选取的话,在经过不断卷积后,输出的形状不会发生变化,和输入时大小一样(Pw同理)
代码实现:
在所有侧边填充 1 个像素(填一圈)
# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
# 这里的(1,1)表示批量大小和通道数都是1
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
# 省略前两个维度:批量大小和通道
return Y.reshape(Y.shape[2:])
# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列,左边一行,右边一行
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8)) # 输入为 8*8
comp_conv2d(conv2d, X).shape
放入之前的公式就是:
Ph=(3-1)=2,Pw=(3-1)=2,因为Kh为奇数,故在上下两侧都填充Ph/2=1行,即共填充2行
Pw同理,填充左右两侧。所以说,其实就是填充了一圈
填充不同的高度和宽度
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
接下来讲步幅,假设希望 输出的大小 比 输入小
那么就需要很多层的计算才能得到较小输出,为解决这一问题,采取如下措施:
高度3,宽度2 的步幅(行/列的滑动步长)
如果给定 高度Sh 和 宽度Sw 的步幅,则输出形状将为:
代码实现:
高度和宽度的步幅设置为 2
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
此时输入为 8*8,输出为 4*4
多输入多输出通道
卷积的超参数:输出的通道数
例如,彩色图像都有RGB三个通道,红绿蓝,这时就是多输入
多个输入通道
每个通道都有一个独立的二维卷积核 (长宽) ,所有通道卷积结果相加 得到一个输出结果
多个输出通道
可以有多个3维卷积核 (长 宽 通道) ,每个核对应生成一个输出通道
此时,核变成4维,输出变成3维
其实这里也就是说,我们可以用不同的3维卷积核,实现不同的目标,对应不同的通道
多输出的特定:每个输出可以识别特定模式
多输入的特定:识别并组合
1 * 1卷积
作用:通道融合
输入通道为3,长宽为3,要想输出通道为2(或n),则使用2(或n)个 1*1 的卷积核堆
- 卷积核堆的个数 = 输出通道数
- 一个堆中的卷积核个数 = 输入通道数
二维卷积层
公式如下:
此时,就是多输入通道,多输出通道,其中:
ci :卷积核的数(输入通道数)
co :卷积核的数(输出通道数)
n :输入
m :输出
拓展
eg:图像中rgb三个通道,是用 [height,width,3] 的卷积核去做卷积操作,那个3是指的卷积核的厚度,所以卷积不是在单个通道上,而是3个通道一起。我希望下一层有多少个feature map(特征映射,或者说希望下一次得到多少个通道),我就用几个不同的卷积核去做卷积。
比如,现在得到了64个通道的结果,就是用64个卷积核得到64个feature map。下一次做卷积操作时,你希望通道数翻倍,就是得到128个特征图。这时,你用128个大小为 [height, width, 64] 的不同卷积核去做卷积。为什么是三个维度的卷积核,因为你上一次得到的是64个feature map,要对这64个通道做卷积,你需要使用厚度为64的卷积核。
如果把输入和输出的高宽都减半的情况下,输出通道数要翻倍。意思就是把空间信息压缩了,然后把这些压缩的信息,更多在通道中存储下来。
卷积层的可学习参数个数 = 输入通道 * 输出通道 * 核大小
池化层
出现原因:卷积层中,矩阵乘积时,对数字的位置很敏感。例如边缘发生一点变化,结果就会产生巨大变化
所以需要:一定的平移不变性,就像是让结果的边缘模糊一些
二维最大池化层
返回滑动窗口的最大值
平均池化层
同上,将最大值替换为平均值即可
- 没有可学习参数
- 在多输入通道时:对每个输入通道应用池化以获得相应的输出通道(输入通道数=输出通道数)
- 超参数:窗口大小、填充、步幅
代码实现
def pool2d(X, pool_size, mode='max'): # 输入 池化窗口大小 mode
p_h, p_w = pool_size
Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) # 设定输出大小
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max() # 取最大值
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean() # 取平均值
return Y
# 构建输入X
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
# 验证输出 max
pool2d(X, (2, 2)) # tensor([[4., 5.],[7., 8.]])
# 验证输出 mean
pool2d(X, (2, 2), 'avg') # tensor([[2., 3.],[5., 6.]])
# 填充和步幅
# 通道1,批量大小1,4*4的矩阵
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
# 框架中步幅和窗口大小相同 都设为3
pool2d = nn.MaxPool2d(3)
pool2d(x)
# 窗口3*3 填充1 步幅2
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(x)
LeNet
这是一个很老的卷积网络了,大家简单了解一下就行
卷积层学习图片空间信息,全连接层转换到类别空间
代码(定义、训练、评估)
class Reshape(torch.nn.Module):
def forward(self, x):
return x.view(-1, 1, 28, 28)
# 模型定义
net = nn.Sequential(
Reshape(),
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
nn.AvgPool2d(2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Flatten(), #一维(批量)保持不变,其余维度全部展开
nn.Linear(16 * 5 * 5, 120), # 输入 输出大小
nn.Sigmoid(),
nn.Linear(120, 84), nn.Sigmoid(),
nn.Linear(84, 10))
# 设定输入,检查模型每一步的变化
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape: \t',X.shape)
# Fashion-MNIST数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
"""使用GPU计算模型在数据集上的精度"""
if isinstance(net, nn.Module):
net.eval() # 设置为评估模式
if not device:
device = next(iter(net.parameters())).device
# 正确预测的数量,总预测的数量
metric = d2l.Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
if isinstance(X, list):
# BERT微调所需的(之后将介绍)
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(d2l.accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
# 训练模型
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
"""用GPU训练模型(在第六章定义)"""
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
print('training on', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
# 训练损失之和,训练准确率之和,样本数
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
with torch.no_grad():
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
f'test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(device)}')
# 训练和评估
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
现代卷积神经网络
到目前为止,很基础的部分已经大致讲完了。接下来的内容,将越来越靠近当前流行的方向
深度卷积神经网络(AlexNet)
图中的汇聚层,就是池化层的意思
从 LeNet(左图)到 AlexNet(右图)的变化
- 输入图片更大,所以核大小和池化大小都更大了
- 新增了3层卷积层和更多的输出通道,识别更多的特征
- 输出的类别变到1000
- 激活函数从sigmod变为ReLU(缓解梯度消失)
- 隐藏全连接层(两个4096)后加入了dropout丢弃层
- 加入了最大池化层
- 数据增强(裁剪、调色...)
代码实现
# ---------定义网络----------
net = nn.Sequential(
# 这里使用一个11*11的更大窗口来捕捉对象。
# 同时,步幅为4,以减少输出的高度和宽度。
# 另外,输出通道的数目远大于LeNet
nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
# 使用三个连续的卷积层和较小的卷积窗口。
# 除了最后的卷积层,输出通道的数量进一步增加。
# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度
nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Flatten(),
# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合
nn.Linear(6400, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
nn.Linear(4096, 10))
# 构造一个高度和宽度都为224的单通道数据,来观察每一层输出的形状
X = torch.randn(1, 1, 224, 224)
for layer in net:
X=layer(X)
print(layer.__class__.__name__,'output shape:\t',X.shape)
# 读取Fashion-MNIST数据集
batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
# 训练
lr, num_epochs = 0.01, 10
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
使用块的网络(VGG)
VGG块:
- 可重复使用的卷积块
- 不同的卷积块个数和超参数可以得到不同复杂度的变种
VGG:
- 多个VGG块后接全连接层
- 每个块由 填充1的3*3卷积 和 步幅2的2*2最大池化 组成
代码实现
# ------定义VGG块------
def vgg_block(num_convs, in_channels, out_channels):
layers = []
for _ in range(num_convs):
layers.append(nn.Conv2d(in_channels, out_channels,
kernel_size=3, padding=1))
layers.append(nn.ReLU())
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)
# ------定义5个VGG块------
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
# ------定义VGG------
def vgg(conv_arch):
conv_blks = []
in_channels = 1
# 卷积层部分
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
# 全连接层部分
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
# 构建一个高度和宽度为224的单通道数据样本,以观察每个块之间输出的形状
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape:\t',X.shape)
# 训练Fashion-MNIST数据集
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
网络中的网络(NiN)
NiN块:
- 一个卷积层跟两个全连接层,步幅1,无填充
- 这里的全连接层就是1*1的卷积,相当于全连接层的作用
NiN:
- 交替使用NiN块和步幅为2的最大池化层(减小高宽,增大通道数)
- 最后使用全局平均池化层得到输出(输入通道数=输出类别数,每个通道取一个数做类别)
代码实现
# --------定义NiN块--------
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(), # strides默认为1,padding默认为0
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
# --------定义NiN--------
net = nn.Sequential(
nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
# 标签类别数是10
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
nn.Flatten())
# 创建一个数据样本来查看每个块的输出形状
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
# 训练
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
含并行连接的网络(GoogLeNet)
首先介绍 Inception 块,如下图所示:
假设输入是192*28*28,则各步骤通道数如上图所示,最终输出通道数为 256 = (64+128+32+32)
其中,
- 4条有不同超参数的卷积层或池化层,分别抽取不同信息,然后在输出通道合并
- 输出的高宽不变,和输入时相同
- 通道的分配不是固定的,是实验测试出来的
白色块的1*1卷积层,用作降低通道数来控制模型复杂度- 蓝色块的卷积层,用于提取空间信息
GoogLeNet
其中,可以分为5个阶段,一共有9个inception块
使用MaxPool降低高宽
使用FC全连接层映射,改变通道适应最终目标
一个stage:高宽减半
代码实现
# --------定义Inception块--------
class Inception(nn.Module):
# c1--c4是每条路径的输出通道数
def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):
super(Inception, self).__init__(**kwargs)
# 线路1,单1x1卷积层
self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)
# 线路2,1x1卷积层后接3x3卷积层
self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)
self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
# 线路3,1x1卷积层后接5x5卷积层
self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)
self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
# 线路4,3x3最大汇聚层后接1x1卷积层
self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)
def forward(self, x):
p1 = F.relu(self.p1_1(x))
p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
p4 = F.relu(self.p4_2(self.p4_1(x)))
# 在通道维度上连结输出
return torch.cat((p1, p2, p3, p4), dim=1)
# --------定义GooLeNet--------
# stage1到stage5
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
nn.ReLU(),
nn.Conv2d(64, 192, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
Inception(256, 128, (128, 192), (32, 96), 64),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
Inception(512, 160, (112, 224), (24, 64), 64),
Inception(512, 128, (128, 256), (24, 64), 64),
Inception(512, 112, (144, 288), (32, 64), 64),
Inception(528, 256, (160, 320), (32, 128), 128),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
Inception(832, 384, (192, 384), (48, 128), 128),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten())
net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
# Fashion-MNIST数据集,将输入的高宽从224降到96,简化计算。下面演示各个模块输出的形状变化。
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
# 训练
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
批量归一化(BN)
这里也就是我们常说的BN层(batch normalization),网上对其解释有很多,我觉得可以采用如下方式来讲比较好理解
前情提要
我们都知道,数据进入网络训练前,不是一下子训练所有数据,而是把其分成一批一批的,依次送入,我们常提到的batch size就是指每个批次的数据量。
同时我们也知道,在深度学习网络中,有许多的隐藏层。在训练过程中,每一层的输入分布会随着前一层参数的变化而变化,上层网络(深层)需要不停调整来适应输入数据分布的变化,这句话的意思就是:
对于某一层来说,我需要不断学习各式各样的输入数据,然后再输出。当这些输入数据千奇百怪时,我要学起来也很复杂,需要不停的调整自己来适应。而要是能将其变为统一的分布,那我学起来就简单了一些。
目的
如何统一分布,就用BN来实现。
就是把每一层的输出归一化
固定小批量中的均值和方差,然后学习出适合的 偏移和缩放(这两个参数是BN公式中的,影响batch的参数)
可以加速收敛,但一般不改变模型精度
作用在
- 全连接层和卷积层输出上,激活函数前
- 全连接层和卷积层输入上
- 对于全连接层,作用在特征维
- 对于卷积层,作用在通道维
代码实现
# 定义batch norm
def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式
if not torch.is_grad_enabled():
# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:
# 使用全连接层的情况,计算特征维上的均值和方差
mean = X.mean(dim=0)
var = ((X - mean) ** 2).mean(dim=0)
else:
# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。
# 这里我们需要保持X的形状以便后面可以做广播运算
mean = X.mean(dim=(0, 2, 3), keepdim=True)
var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
# 训练模式下,用当前的均值和方差做标准化
X_hat = (X - mean) / torch.sqrt(var + eps)
# 更新移动平均的均值和方差
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 缩放和移位
return Y, moving_mean.data, moving_var.data
# 创建一个batchnorm层
class BatchNorm(nn.Module):
# num_features:完全连接层的输出数量或卷积层的输出通道数。
# num_dims:2表示完全连接层,4表示卷积层
def __init__(self, num_features, num_dims):
super().__init__()
if num_dims == 2:
shape = (1, num_features)
else:
shape = (1, num_features, 1, 1)
# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0
self.gamma = nn.Parameter(torch.ones(shape))
self.beta = nn.Parameter(torch.zeros(shape))
# 非模型参数的变量初始化为0和1
self.moving_mean = torch.zeros(shape)
self.moving_var = torch.ones(shape)
def forward(self, X):
# 如果X不在内存上,将moving_mean和moving_var
# 复制到X所在显存上
if self.moving_mean.device != X.device:
self.moving_mean = self.moving_mean.to(X.device)
self.moving_var = self.moving_var.to(X.device)
# 保存更新过的moving_mean和moving_var
Y, self.moving_mean, self.moving_var = batch_norm(
X, self.gamma, self.beta, self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)
return Y
# 将BN层应用于LeNet
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(), # 通道数6,4D卷积
nn.AvgPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(), # 加在激活函数前
nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(), # 压扁 多维变一维
nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(), # 输入,2D卷积
nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),
nn.Linear(84, 10))
# 在Fashion-MNIST数据集训练
lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
残差网络(ResNet)
模型很深,很复杂,不一定就好,有可能小一点,简单一点的模型能达到更好的效果
- 残差允许输入跨过一些层,跳过一些运算步骤,更快向前传播
- 使得更深的网络更容易训练
残差块
如下两种都是残差的实现,分别是 包含以及不包含 1×1 卷积层的残差块
可以看到侧面都有一个箭头,从上一次的输出,与当前输出相加,以此跳过中间的部分
ResNet-18
有非常多的变体,如下是其中的一种,
代码实现
# ---------定义残差块---------
class Residual(nn.Module): #@save
def __init__(self, input_channels, num_channels,
use_1x1conv=False, strides=1):
super().__init__()
self.conv1 = nn.Conv2d(input_channels, num_channels,
kernel_size=3, padding=1, stride=strides)
self.conv2 = nn.Conv2d(num_channels, num_channels,
kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2d(input_channels, num_channels,
kernel_size=1, stride=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm2d(num_channels)
self.bn2 = nn.BatchNorm2d(num_channels)
def forward(self, X):
Y = F.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
Y += X
return F.relu(Y)
# ---------定义ResNet---------
# 输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×3的最大汇聚层
# 每个卷积层后增加了批量规范化层
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# 除第一个残差块步幅为2,其余不变
def resnet_block(input_channels, num_channels, num_residuals,
first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(Residual(input_channels, num_channels,
use_1x1conv=True, strides=2))
else:
blk.append(Residual(num_channels, num_channels))
return blk
# 模块2到5,每个模块使用2个残差块
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))
# 全局平均池化,以及全连接层输出
net = nn.Sequential(b1, b2, b3, b4, b5,
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(), nn.Linear(512, 10))
# 观察一下ResNet中不同模块的输入形状是如何变化的
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
# 训练
lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
密集连接网络(DenseNet)
这部分内容,视频里没有,但是书中有,我认为也是比较重要的,所以还是讲一下。
看图说话:
ResNet是每个层与前面的某层(一般是2~3层)短路连接在一起,连接方式是通过元素级相加
DenseNet中,每个层都会与前面所有层在channel维度上连接(concat)在一起(这里各个层的特征图大小是相同的,后面会有说明),并作为下一层的输入
每个层都会接受其前面所有层作为其额外的输入,越往后通道数数越多
由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
代码实现
# 定义块
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(DenseBlock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(
num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
# 连接通道维度上每个块的输入和输出
X = torch.cat((X, Y), dim=1)
return X
# 定义一个有2个输出通道数为10的DenseBlock。 使用通道数为3的输入时,我们会得到通道数为的输出
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape # torch.Size([4, 23, 8, 8])
# 定义过滤层
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1),
nn.AvgPool2d(kernel_size=2, stride=2))
# 对上一个例子中稠密块的输出使用通道数为10的过渡层。 此时输出的通道数减为10,高和宽均减半
blk = transition_block(23, 10)
blk(Y).shape # torch.Size([4, 10, 4, 4])
# 定义DenseBlock
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
# 上一个稠密块的输出通道数
num_channels += num_convs * growth_rate
# 在稠密块之间添加一个转换层,使通道数量减半
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveAvgPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10))
# 训练
lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
下期预告
后面讲啥我也不太清楚,看课程似乎是一些零碎的知识点 ——2024.8.20