本文主要介绍:当我们拿到一个代码后,如何将它运行
包含有:基本的linux、conda命令、如何远程连接服务器、使用vscode或pycharm的教程......
目录
基础命令
Linux命令
操作系统激活环境 source ~/.bashrc
克隆代码库 git clone https://github.com/ultralytics/yolov3.git
也可以下载到本地,然后上传安装依赖项 pip install -r requirements.txt
-r x :指定要安装的软件包列表所在的文件x下载预训练权重 wget https://pjreddie.com/media/files/yolov3.weights
wget x : 从网络上下载文件x运行目标检测 python detect.py --source path/to/input/image.jpg --weights yolov3.weights --conf-thres 0.5 --output path/to/output/image.jpg
python x : 运行一个python脚本x
--source :
--weights x : 预训练权重文件x查询服务器pid对应用户 ps -f -p PID
连接服务器IP ssh 172.xx.x.xxx
查看有没有网络 ping 172.xx.x.xxx
退出服务器 exit
vim在插入模式下粘贴 shift+insert
新建文件夹 mkdir name
删除文件夹 rm -rf namerm -f *
conda命令
1.查看存在的环境:conda info -e
2.创建新环境:conda create -n 环境名 python=(python的版本号)
3.切换到某个环境:conda activate 环境名
4.查看环境中已安装的包:conda list
5.在环境中安装包:pip install 包名
6.删除包:pip unstall 包名
7.删除环境:conda env remove -n 环境名
常见库的安装命令
pip install numpy
pip install matplotlib
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install torch -i https://mirrors.aliyun.com/pypi/simple/
pip install torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python
在服务器上跑代码——MobaXterm终端举例
使用jupyter跑
安装jupyter
pip install jupyter
启动jupyter
jupyter notebook
安装内核,名字要和虚拟环境名字一样
创建新文件夹
把想要跑的代码放进来
找到jupyter下面的代码,直接打开
更改内核为刚刚安装的
选中要运行的代码,直接一步步运行
使用linux命令跑
刚进入,在dash界面,需要换为bash命令输入 (每次进入,若不是shell,均需重复)
exec bash
conda deactivate
1. conda环境
创建新conda环境:
# name:指定要创建的新环境的名称
conda create -n name python=3.7
conda环境激活
conda activate name
关掉原来的环境,重新激活环境
conda deactivate
查看conda版本
conda -V
查看python环境
python -V
查看conda下的包
conda list
查看所有conda环境:
conda info --env
conda env list
2. 安装包
安装包,用pip install
检查一下安装好了没,路径对不对
3. 跑代码
上传代码至服务器,直接拖进去
运行代码
4. tmux:终端复用器
新建一个窗口:tmux new -s name(name是一个窗口的名字)
打开窗口 tmux attach
打开某个窗口 tmux attach -t name
查看所有窗口 tmux ls
新建其他窗口:先ctrl+b 再 c
跳转到下一个窗口:先ctrl+b 再 n
跳转到上一个窗口:先ctrl+b 再 p
跳转到指定窗口:先ctrl+b 再分号键
出现index界面输入bash号
左右分屏:先ctrl+b 再shift+%
上下分屏:先ctrl+b 再shift+分号键
分屏跳转:先ctrl+b 再上下左右方向键
返回初始界面:crtl + b 再 d
彻底关闭当前的窗格:ctrl + b 再x
5.服务器内存、显卡等查看
显卡使用情况:nvidia-smi
CPU占用情况:top
选择某张卡跑代码:
1. 加载py文件开头:os.environ['CUDA_VISIBLE_DEVICES']='1'
2. 运行代码时:CUDA_VISIBLE_DEVICES=1 python xxx.py
在服务器上跑代码——vscode举例
vscode中连接服务器
首先需要在vscode中下载一个ssh拓展包,点击拓展,搜索“Remote-SSH”下载
点击远程资源管理器
按照服务器的IP等等,确认连接:ssh -P 端口号 客户端用户名@服务器ip地址
可能还需要
之后还需要输入密码
点击左侧的打开文件夹,选择想查看的项目
这时候就可以打开代码了
还可以创建多个链接,或者打开多个项目
这时,我们在终端也可以操作
在vscode中debug
通常来说,只需要点击界面右上角的符号即可dubug
但如果想添加一些参数,例如 “python main.py --config /data/configs/config.yaml” 添加了config,则需要:
大部分的代码都是默认生成的,包括默认debug当前打开的代码,我们只需要添加args部分的代码,两个引号为一组,逗号隔开
此时需要点击页面左侧的按钮来debug,右侧的debug按钮不行
如果还需要指定conda(运行代码需要用某一环境的包)
crtl + shift + p
找到 ”选择解释”
在里面挑选合适的就可以了,这样就不会出现 no module 的报错
使用vscode中的虚拟环境
键盘输入快捷键“Shift+Ctrl+P”打开命令面板,输入“Python”,选择“Python:创建环境”,选择创建“Vene”环境
这时,在界面右小角会出现venv
在终端中输入以下命令激活环境(Windows系统下)
激活环境:& .\.venv\Scripts\activate
退出环境:deactivate
此时可以开始pip安装包,通常使用pip....或pip3.....
在本地跑代码——pycharm举例
前情提要:此处不使用conda,完全是本地环境
1. 打开项目并配置环境
将找到的代码保存在本地后,解压缩,直接将一整个文件夹拖拽到pycharm图标上,即可打开项目
打开后,首先点击界面右上角的这个位置 -> edit configuration,并完成如下四个步骤配置环境
接下来打开设置:File -> Settings -> Project: -> Python Interpreter
在这里需要选择好解释器,并且可以直接点击+号进行包管理(但我一般从终端输入命令下载)
2. 安装项目所需的库
除了第一点中提到的在设置里安装包,还可以采取如下方式用命令安装,或者直接在代码报错的位置处理(不展示了)
打开终端 pycharm terminal
如果项目提供了requirements.txt,可以直接这样一行安装(用清华源安装会更快哦)
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
安装某一个单独的包
pip install requests==2.18.4
安装某一个单独的包,使用清华源镜像
pip install torch===1.3.0 torchvision===0.4.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
3. 运行代码
上述工作准备就绪,就可以运行代码了
常见报错与解决方法:
pytorch版本问题
参考:
版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系_pytorchvision各种版本的区别-CSDN博客
当使用镜像时,不要科学上网!!!!!!
查看python和pip版本,重新在pytorch官网选择合适的版本
python --version
pip --version
pip更新,pip版本太老
python -m pip install --upgrade pip
查看指定库的可用版本
pip install SomePackage==
查看pytorch版本,直接在命令行输入即可
CUDA版本问题
eg. 运行项目时遇到`AssertionError: Torch not compiled with CUDA enabled`错误,主要原因是安装了CPU版PyTorch或CUDA版本不匹配。解决方法包括:检查并卸载CPU版PyTorch,确定Python版本,下载对应CUDA和PyTorch版本的whl文件,安装CUDA,最后在项目目录下使用pip安装GPU版PyTorch。
终端输入 pip list,如下显示为CPU版本torch(通过镜像安装的就是CPU版)
如下显示为GPU版本torch
可以去pytorch官网,选择合适的版本,直接复制最下方生成的命令到终端就可以
pytorch官网:PyTorchhttps://pytorch.org/
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
去nvidia官网,下载合适cuda版本,此处以最常见的11.8为例