问题一解答:降水量与土地利用/土地覆被类型的时空演化特征描述
1. 降水量的描述性统计方法
降水量是一个连续变化的变量,可以通过以下几种描述性统计方法进行时空演化特征的总结:
-
平均降水量:统计中国范围内1990至2020年各年份的平均降水量,用于展示降水的时间趋势。
-
年际变化率:计算每年降水量相对于上一年的变化率,展示降水量的波动情况。
-
降水量的空间分布:使用中国区域的降水量分布图,展示各个地理区域的降水量差异。
通过这些统计指标,我们可以得出结论:中国的降水量在1990至2020年间呈现出显著的年际波动,尤其在特定年份(如厄尔尼诺和拉尼娜现象年份),降水量变化更为明显。在空间上,降水量呈现东南沿海地区高,西北内陆地区低的显著分布特征。
代码:
import numpy as np
import matplotlib.pyplot as plt
# 假设降水量数据为1990至2020年的逐年平均降水量
years = np.arange(1990, 2021)
average_precipitation = np.random.uniform(500, 1200, len(years)) # 生成随机数据作为示例
# 计算年际变化率
annual_change_rate = np.diff(average_precipitation) / average_precipitation[:-1]
# 绘制降水量和年际变化率图表
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(years, average_precipitation, marker='o')
plt.title("1990-2020年平均降水量")
plt.xlabel("年份")
plt.ylabel("平均降水量(mm)")
........................
2. 土地利用/土地覆被类型的描述性统计方法
土地利用和土地覆被是离散分布的变量,可以通过以下统计方法描述其变化:
-
土地覆被类型的比例:统计每年各类土地覆被类型的比例(如耕地、林地、草地等),展示土地利用的演变趋势。
-
变化速率:计算各类土地利用类型的变化速率,展示土地利用/覆被的突变现象。
-
空间分布图:通过土地利用的空间分布图,展示不同区域土地利用类型的空间变化。
这些方法可以揭示出土地利用类型在1990至2020年间的变化。例如,耕地面积可能随着城市化的进展而减少,林地面积则可能通过植树造林项目有所增加。