联邦学习在边缘计算遇上区块链:机遇和挑战
与传统ai技术相比
weak point:data privacy concerns and high overhead of raw data communications
移动边缘计算由于数据隐私问题和原始数据通信的高开销,已经成为了一个弱点
而联邦学习提出解决方案,通过协调多个移动设备来训练共享的AI模型,而不直接暴露其底层数据,从而大大增强了隐私性。同时,为了FL的安全性和可拓展性,区块链作为一种分类账技术在不需要中央服务器的情况下实现去中心化的FL训练。
Particularly, the integration of FL and blockchain leads to a new paradigm, called FLchain, which potentially transforms intelligent MEC networks into decentralized, secure, and privacy-enhancing systems.
特别是,FL和区块链的集成导致了一种称为FLchain的新范式,它有可能将智能MEC网络转变为分散、安全和增强隐私的系统。
通过使用区块链,FL可以通过分散的数据分类账实现,而不需要任何中央服务器,从而降低了单点故障的风险,并且所有网络实体都以透明的方式跟踪任何更新事件和用户行为。
通过这种方式,区块链有助于消除对中央服务器的需求,从而可能减轻通信成本,并实现更好的智能网络可扩展性。
本文的主要贡献:
1)概述了FL和区块链的基本原理,提出了一种适用于边缘计算网络的新型FLchain架构。
2)提出并讨论了FLchain中的通信成本、资源分配、激励学习、安全与隐私保护等技术问题。
3)分析了FLchain在边缘数据共享、边缘内容缓存、边缘群智感知等多个应用领域带来的机遇。
4)概述了FLchain在边缘计算中的关键挑战,并讨论了未来可能的发展方向。
介绍
目前的FL系统仍然存在一些问题。
- 用户需要完全信任MEC服务器进行模型聚合,但这在现实的无线网络中并不总是能够实现。
- 虽然FL可以帮助增强用户隐私,但将学习参数传输到MEC服务器容易受到安全瓶颈的影响,例如恶意威胁可以修改或窃取本地更新信息[5]。
- 一旦服务器受到攻击,依赖MEC服务器进行模型聚合就会引入单点故障瓶颈,从而破坏整个FL系统。
- 考虑到现代边缘计算网络的高可扩展性,单个MEC服务器无法管理汇总从数百万台设备卸载的所有更新。
因此,迫切需要开发一种不使用中央服务器的更分散的FL方法,以解决启用下一代智能边缘网络的安全性和可扩展性问题。
联邦学习和区块链:最先进的技术
联邦学习(FL)
FL不是将所有原始数据卸载到云或数据中心来执行人工智能训练,而是通过将人工智能功能(例如人工智能模型训练)直接分配到本地设备来实现分布式学习,从而在聚合器(例如基站(BS)或接入点(AP)的MEC服务器)上构建共享的全局模型。
(1)在FL过程中,我们将移动设备集记为K,每个设备k∈K通过使用自己的数据集D参与共享AI模型的训练,更具体地说,在每一轮通信中,每个设备训练一个局部模型并计算更新
(2)每个设备k将其计算的更新上传到MEC服务器,然后将其聚合并计算出一个新版本的全局模型
(3)然后将这个全局模型下载到所有设备中进行下一轮训练,直到全局学习完成。
值得注意的是,在经典的FL中,全局模型是由MEC服务器计算和更新的。然而,在FLchain中,全局模型计算是通过区块链以分散的方式直接在设备上执行的。
区块链(blockchain)
基本原理:区块链基本上是一个在点对点(P2P)网络上运行的公共、可信和共享的分类账。区块链概念背后的关键思想是它的去中心化,即区块链上的数据不受任何单一实体的控制。相反,所有区块链节点,如边缘网络中的移动设备和MEC服务器,都拥有通过共识机制验证和管理存储在区块链中的数据的平等权利。
好处
这种去中心化的特性使得区块链能够抵抗数据修改或攻击。而且,中心服务器的消除避免了单点故障的风险,从而提高了区块链系统的可靠性和稳定性。
区块链类别
区块链可以分为三种主要类型,包括公共(或无权限),私有(或许可)和联盟区块链
- 公共区块链:是一个开放的网络,允许每个人加入并进行交易,并参与共识过程。最著名的公共区块链由比特币和以太坊组成,具有开源和智能合约区块链平台。
- 私有区块链:是一个由权威机构管理的仅限邀请的网络,区块链中的所有活动(如事务写入和检索)都需要通过验证机制进行分配。
- 联盟区块链:是由多个组织而不是单一组织管理的区块链平台。一个流行的联盟区块链平台是超级账本结构。超级账本结构是由Linux基金会于2015年创建的一个联盟区块链平台。与其他区块链技术类似,超级账本结构有一个分类账,使用名为chaincode的智能合约,并协调交易组织中的参与者。
整合
威胁模型
- 内部威胁:在FLchain系统中,MEC服务器在训练过程中是半可信的。在这种假设下,MEC服务器可能是诚实的,但对参数更新很好奇,因此可以从区块链上的交易中推断出一些敏感信息。更具体地说,虽然数据没有以原始格式显式共享,但好奇的MEC服务器仍然有可能从梯度中窃取训练数据并近似地重建原始数据,特别是在架构和参数没有完全保护的情况下。此外,恶意客户端可以在未经其他客户端和MEC服务器同意的情况下,利用和学习从全局模型更新中提取的图像像素等数据结构。
- 外部威胁:在客户端,攻击者可以修改数据特征或在原始数据集中注入不正确的数据子集以嵌入后门到模型中,旨在调整本地客户端的训练目标。攻击者还可以入侵一些客户端设备,攻击者在学习过程中操纵被入侵客户端设备上的本地模型参数,导致全局模型更新出现错误。此外,攻击者可以在FL训练期间对无线通信信道进行攻击,以获取客户端的个人信息。
安全要求
需要为FL的训练提供隐私保护,确保数据信息的安全,鼓励用户参与数据训练
整合动机
凭借其独特的属性,区块链具有提高边缘网络中FL安全性的巨大潜力。具体来说,使用去中心化的区块链可以消除对FL培训中心服务器的需求。相反,使用一个共享的不可变账本来聚合全局模型,并将全局更新分发到学习客户端,以便在设备上进行直接计算。模型聚合的去中心化不仅减轻了单点故障的风险,以获得更好的训练可靠性,而且还减轻了全局模型聚合中中央服务器的负担,特别是当边缘网络拥有大量客户端时。
此外,消除FLchain模型聚合的中心服务器可能会降低通信成本,并基于其分散的网络拓扑吸引更多的移动用户参与数据训练,从而增强移动边缘网络的可扩展性。
经典的FL模型依赖于一个一个集中的服务器,即MEC服务器来进行模型聚合,这在无处不在的无线网络中存在故障和可扩展性问题。此外,这种集中式FL架构无法吸引位置较远的设备加入服务器进行训练,从而限制了整个系统的学习能力。
提出的FLchain架构
MEC服务器负责区块链挖矿,而移动设备可以参与本地培训或挖矿,或者同时执行培训和挖矿任务。在采矿过程中,所有的移动设备都聚集的地方更新开存储在一块分享整个网给在每个通信,然后设备下载在本地生成的块来计算全局模型。
(1)为边缘网络中的特定学习任务(例如联邦医疗保健分析)初始化一组MEC服务器及其相关设备。每个MEC服务器作为学习客户端,将其资源用于运行区块链共识(或挖掘),移动设备加入到FL过程中运行训练算法。
(2)每个训练节点使用自己的数据计算一个本地模型,然后通过区块链创建一个事务,将本地模型传输到其关联的MEC服务器。
(3) MEC服务器从其客户端收集事务并根据定义的数据结构存储它们,然后在某个时隙创建一个块。每个区块由唯一的哈希值以及时间戳和旨在防止未经授权的对区块的复制的nonce来标识。然后MEC服务器参与挖矿过程(例如PoW)来验证新创建的区块,并在所有MEC服务器之间达成共识。可以选择一个MEC服务器作为管理器,在其时间段协调挖掘过程。同时,设备也会作为完整或部分节点参与挖矿区块,以获得额外利润。
(4)挖矿完成后,经过验证的区块被添加到区块链中,并通过服务器-设备通信广播到所有本地设备。现在,本地模型更新被安全地存储在区块链中。
(5)本地设备下载包含其他设备所有本地更新的块。这允许每个设备根据预定义的模型聚合规则(如加权和规则或基于误差的聚合规则)直接在本地设备上计算全局模型。换句话说,全局模型是在本地计算的,而不是像传统的FL架构那样在中央服务器中计算。训练过程不断迭代,直到全局损失函数收敛或达到所需的精度。
经典FL
优点:
- 能够在不共享原始数据的情况下在本地设备上训练AI模型。
- 增强用户数据隐私的能力
- 节省网络资源的能力,例如:带宽、发射功率
缺点:
- 仍然存在安全问题(例如,数据攻击、单点故障)
- 远程设备与服务器的通信延迟高。
- 模型汇总不透明,缺乏激励机制
适用场景:
- 所有设备和服务器都需要为协作训练建立健壮的通信。
- 学习客户端或设备需要信任中央服务器
FLchain
优点:
- 不需要中央服务器。
- 消除单点故障风险。
- 可以在设备和服务器之间建立信任
- 提高智能边缘网络的可扩展性。
缺点:
- 区块链挖掘可能需要的延迟和能源成本。
- 开放更新共享可能带来的隐私风险。
- FLchain训练中训练数据组织和区块链存储之间可能存在的冲突。
适用场景:
- 移动设备能够训练学习模型并运行采矿以获得额外利润。
- FLchain使用的区块链平台,可以在所有移动设备之间建立一个分散的数据网络,用于共享培训。
设计与展望
通信成本
问题:FLchain的延迟公式需要考虑设备上的训练延迟、更新通信延迟和块挖掘延迟,并考虑训练精度意识。
经验教训和展望:
- 通信成本是实际部署FLchain系统之前需要解决的关键问题。目前大多数FLchain方案通过考虑设备上的训练延迟、与矿工的通信延迟和挖掘延迟来分析通信成本。
- 可以采用一些可能的解决方案来实现更低的通信成本,例如基于奖励的训练和根据学习精度和带宽资源约束调整块到达率。
- 目前大多数解决方案,依赖于PoW共识机制,这通常需要大带宽和能源来实现挖掘过程。因此,应该考虑开发轻量级区块链来促进FLchain,旨在增强用户的培训体验,降低系统成本。
资源配置
问题:在客户端,当设备需要为数据训练和区块链参与共享它们的计算和存储资源时。在MEC服务器端,还需要进行资源管理,以确保以最小分叉概率将由本地更新组成的块附加到区块链的方式进行有效挖掘。
经验和展望:
- 资源分配是确保FLchain数据训练的最佳资源使用的重要任务。大多数最先进的技术,使用DRL在能量和信道带宽可用性条件下实现FLchain系统的资源分配策略。
- 基于DPoS共识的轻量级区块链平台已被采用,以支持FLchain中的模型更新和块挖掘,这有可能减轻FL训练的能耗。
- 可以考虑一些可能的方向来进一步改善资源分配,通过联合考虑区块生成、模型到达率和设备上的学习率。这样,我们可以在基于fl的智能边缘网络中实现矿工和本地设备的协同资源分配解决方案
激励学习
问题:如果没有适当的激励机制,客户可能不愿意加入数据训练,这将降低所设计的FL系统的可扩展性。
经验教训和展望:在未来,重要的是分析奖励利润之间的权衡和系统成本,利益客户和模型所有者,拍卖理论可以用于激励分析
安全和隐私保护
问题:为了确保FLchain系统的鲁棒性和安全性,构建安全和隐私保护机制至关重要。诸如投毒攻击和数据隐私威胁等攻击会使FLchain系统变得脆弱和危险,特别是在由多个设备和服务器组成的分布式边缘网络中。
经验教训和展望:
- 对于隐私保护,差分隐私技术可以在FLchain中使用,如果输出独立于输入数据的特定数据点,则模型计算被认为是差分隐私。
- 此外,在FLchain中,区块链挖掘和本地训练都应该考虑攻击模型。
- 以及FL训练中的计算,其中数据可以在区块链上共享之前进行加密,用于FL模型聚合。
独特的挑战及未来的方向
- FLchain中的安全问题
- FLchain中的通信和异构性问题
- FLchain中的经济问题
- FLchain中的抄袭问题
- MEC系统的严格延迟要求