pandas第一天

# seriees常用属性

下面我们介绍 Series 的常用属性和方法。  

在下表列出了 Series 对象的常用属性。

名称  属性  

1.axes  以列表的形式返回所有行索引标签。  

2.dtype 返回对象的数据类型。  

3.empty 返回一个空的 Series 对象。  

4.ndim  返回输入数据的维数。  

5.size  返回输入数据的元素数量。  

6.values    以 ndarray 的形式返回 Series 对象。  

7.index 返回一个RangeIndex对象,用来描述索引的取值范围。  

# dataframe入门  

DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。  

DataFrame 一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。其结构图示意图,如下所示:

同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增,行标签与 DataFrame 中的数据项一一对应。上述表格的行标签从 0 到 5,共记录了 5 条数据(图中将行标签省略)。当然你也可以用“显式索引”的方式来设置行标签。

下面对 DataFrame 数据结构的特点做简单地总结,如下所示:  

* DataFrame 每一列的标签值允许使用不同的数据类型;  

* DDataFrame 是表格型的数据结构,具有行和列;  

* DDataFrame 中的每个数据值都可以被修改。  

* DDataFrame 结构的行数、列数允许增加或者删除;  

* DDataFrame 有两个方向的标签轴,分别是行标签和列标签;  

* DDataFrame 可以对行和列执行算术运算。  

# 创建DataFrame对象  

import pandas as pd  

pd.DataFrame( data, index, columns, dtype, copy)

# Pandas Panel三维数据结构  

Panel 是一个用来承载数据的三维数据结构,它有三个轴,分别是 items(0 轴),major_axis(1 轴),而 minor_axis(2 轴)。这三个轴为描述、操作 Panel 提供了支持,其作用介绍如下:

* items:axis =0,Panel 中的每个 items 都对应一个 DataFrame。  

* major_axis:axis=1,用来描述每个 DataFrame 的行索引。  

* minor_axis:axis=2,用来描述每个 DataFrame 的列索引。  

pandas.Panel()  

您可以使用下列构造函数创建一个 Panel,如下所示:  

pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)  

import pandas as pd  

p = pd.Panel()  

print(p)

# Python Pandas描述性统计  

描述统计学(descriptive statistics)是一门统计学领域的学科,主要研究如何取得反映客观现象的数据,并以图表形式对所搜集的数据进行处理和显示,最  终对数据的规律、特征做出综合性的描述分析。Pandas 库正是对描述统计学知识完美应用的体现,可以说如果没有“描述统计学”作为理论基奠,那么   Pandas 是否存在犹未可知。下列表格对 Pandas 常用的统计学函数做了简单的总结:  

函数名称    描述说明  

count() 统计某个非空值的数量。  

sum()   求和  

mean()  求均值  

median()    求中位数  

mode()  求众数  

std()   求标准差  

min()   求最小值  

max()   求最大值  

abs()   求绝对值  

prod()  求所有数值的乘积。  

cumsum()    计算累计和,axis=0,按照行累加;axis=1,按照列累加。  

cumprod()   计算累计积,axis=0,按照行累积;axis=1,按照列累积。  

corr()  计算数列或变量之间的相关系数,取值-1到1,值越大表示关联性越强。  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值