# seriees常用属性
下面我们介绍 Series 的常用属性和方法。
在下表列出了 Series 对象的常用属性。
名称 属性
1.axes 以列表的形式返回所有行索引标签。
2.dtype 返回对象的数据类型。
3.empty 返回一个空的 Series 对象。
4.ndim 返回输入数据的维数。
5.size 返回输入数据的元素数量。
6.values 以 ndarray 的形式返回 Series 对象。
7.index 返回一个RangeIndex对象,用来描述索引的取值范围。
# dataframe入门
DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。
DataFrame 一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表,所谓异构,指的是表格中每列的数据类型可以不同,比如可以是字符串、整型或者浮点型等。其结构图示意图,如下所示:
同 Series 一样,DataFrame 自带行标签索引,默认为“隐式索引”即从 0 开始依次递增,行标签与 DataFrame 中的数据项一一对应。上述表格的行标签从 0 到 5,共记录了 5 条数据(图中将行标签省略)。当然你也可以用“显式索引”的方式来设置行标签。
下面对 DataFrame 数据结构的特点做简单地总结,如下所示:
* DataFrame 每一列的标签值允许使用不同的数据类型;
* DDataFrame 是表格型的数据结构,具有行和列;
* DDataFrame 中的每个数据值都可以被修改。
* DDataFrame 结构的行数、列数允许增加或者删除;
* DDataFrame 有两个方向的标签轴,分别是行标签和列标签;
* DDataFrame 可以对行和列执行算术运算。
# 创建DataFrame对象
import pandas as pd
pd.DataFrame( data, index, columns, dtype, copy)
# Pandas Panel三维数据结构
Panel 是一个用来承载数据的三维数据结构,它有三个轴,分别是 items(0 轴),major_axis(1 轴),而 minor_axis(2 轴)。这三个轴为描述、操作 Panel 提供了支持,其作用介绍如下:
* items:axis =0,Panel 中的每个 items 都对应一个 DataFrame。
* major_axis:axis=1,用来描述每个 DataFrame 的行索引。
* minor_axis:axis=2,用来描述每个 DataFrame 的列索引。
pandas.Panel()
您可以使用下列构造函数创建一个 Panel,如下所示:
pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)
import pandas as pd
p = pd.Panel()
print(p)
# Python Pandas描述性统计
描述统计学(descriptive statistics)是一门统计学领域的学科,主要研究如何取得反映客观现象的数据,并以图表形式对所搜集的数据进行处理和显示,最 终对数据的规律、特征做出综合性的描述分析。Pandas 库正是对描述统计学知识完美应用的体现,可以说如果没有“描述统计学”作为理论基奠,那么 Pandas 是否存在犹未可知。下列表格对 Pandas 常用的统计学函数做了简单的总结:
函数名称 描述说明
count() 统计某个非空值的数量。
sum() 求和
mean() 求均值
median() 求中位数
mode() 求众数
std() 求标准差
min() 求最小值
max() 求最大值
abs() 求绝对值
prod() 求所有数值的乘积。
cumsum() 计算累计和,axis=0,按照行累加;axis=1,按照列累加。
cumprod() 计算累计积,axis=0,按照行累积;axis=1,按照列累积。
corr() 计算数列或变量之间的相关系数,取值-1到1,值越大表示关联性越强。