【C++学习第18天】最短路算法

一、最短路算法

二、算法

1、Dijkstra算法

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N];
int dist[N];
bool st[N];

int dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	for(int i = 0; i < n; i++)
	{
		int t = -1;
		for(int j = 1; j <= n; j++)
			if(!st[j] && (t == -1 || dist[t] > dist[j]))
				t = j;
		
		st[t] = true;

		for(int j = 1; j <= n; j++)
			dist[j] = min(dist[j], dist[t] + g[t][j]);
	}

	if(dist[n] == 0x3f3f3f3f)
		return -1;
	
	return dist[n];
}

int main()
{
	scanf("%d%d", &n, &m);

	memset(g, 0x3f, sizeof g);

	while(m--){
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		g[a][b] = min(g[a][b], c);
	}

	int t = dijkstra();

	printf("%d\n", t);

	return 0;
}

2、Bellman Ford算法

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 10010;

int n, m, k;
int dist[N], backup[N];

struct Edge
{
	int a, b, w;
}edges[M];

int bellman_ford()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	for(int i = 0; i < k; i++){
		memcpy(backup, dist, sizeof dist);
		for(int j = 0; j < m; j++){
			int a = edges[j].a, b = edges[j].b, w = edges[j].w;
			dist[b] = min(dist[b], backup[a] + w);
		}
	}

	if(dist[n] > 0x3f3f3f / 2)
		return -1;
	return dist[n];
}

int main()
{
	scanf("%d%d%d", &n, &m, &k);

	for(int i = 0; i < m; i++){
		int a, b, w;
		scanf("%d%d%d", &a, &b, &w);
		edges[i] = {a, b, w};
	}

	int t = bellman_ford();

	if(t == -1)
		puts("impossible");
	else
		printf("%d\n", t);
	
	return 0;
}

3、SPFA算法

#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 100010;

int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];

void add(int a, int b, int c)
{
	e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}

int spfa()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;

	queue<int> q;
	q.push(1);
	st[1] = true;

	while(q.size()){
		int t = q.front();
		q.pop();

		st[t] = false;

		for(int i = h[t]; i != -1; i = ne[i]){
			int j = e[i];
			if(dist[j] > dist[t] + w[i]){
				dist[j] = dist[t] + w[i];
				if(!st[j]){
					q.push(j);
					st[j] = true;
				}
			}
		}
	}
	if(dist[n] == 0x3f3f3f3f)
		return -1;
	return dist[n];
}

int main()
{
	scanf("%d%d", &n, &m);

	memset(h, -1, sizeof h);

	while(m--){
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		add(a, b, c);
	}

	int t = spfa();

	if(t == -1)
		puts("impossible");
	else
		printf("%d\n", t);
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值