【题解】2022陕西省赛C

115 篇文章 3 订阅

一. 前置知识

整除分块:
参考:https://www.cnblogs.com/peng-ym/p/8661118.html
在这里插入图片描述

二.题目描述

题目链接: C GCD
给定 l , r , k l,r,k l,r,k,三个整数,在区间 [ l , r ] [l,r] [l,r]中选 k k k个数,一共有多少种公因子?

三.思路

如果判断 一个数 x x x是否可以作为 公因子,那么他在 [ l , r ] [l,r] [l,r],至少有 k k k个数是 x x x的倍数,即
r / x − ( l − 1 ) / x > = k r/x-(l-1)/x>=k r/x(l1)/x>=k
其中, l − 1 l-1 l1是为了找小于 l l l x x x的倍数的个数。
那么我们枚举 [ 1 , r ] [1,r] [1,r]中的所有数,满足上式的数的个数即为ans。
由于 1 ≤ l ≤ r ≤ 1 0 12 1≤l≤r≤10^{12} 1lr1012,不能直接遍历,所以用整除分块时间复杂度降到 O ( n ) O(\sqrt{n}) O(n )

四.Code

#include <bits/stdc++.h>
using namespace std;
const double pi = acos(-1.0);
#define x first
#define y second
#define LL long long 
#define pb push_back
#define all(v) (v).begin(),(v).end()
#define PII pair<int,int>
#define ll_INF 0x7f7f7f7f7f7f7f7f
#define INF 0x3f3f3f3f
#define debug(x) cerr << #x << ": " << x << endl
#define io ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
LL Mod(LL a,LL mod){return (a%mod+mod)%mod;}
LL fpower(LL a,LL b,LL mod) {LL ans = 1; while(b){ if(b & 1) ans = ans * (a % mod) % mod; a = a % mod * (a % mod) % mod; b >>= 1;} return ans; }
int _;
LL l,r,k;
void solve()
{
	//r/i-(l-1)/i>=k;
	cin>>l>>r>>k;
	LL res=0;
	for(LL i=1,j;i<=r;i=j+1)
	{
		if(i<l)j=min(r/(r/i),(l-1)/((l-1)/i));
		else j=r/(r/i);
		res+=(j-i+1)*((r/i)-((l-1)/i)>=k);
	}
	cout<<res<<endl;
}
int main()
{
	io;
	solve();
	return 0;
}

五.总结

这题是采用整出分块进行优化,并非核心思路。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leimingzeOuO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值