遗传算法C语言实现以及思路详解简单易懂

本文介绍了使用C语言实现遗传算法来寻找函数最值的过程,包括初始化参数、定义目标函数、DNA解码、种群初始化、适应度计算、适者生存、生殖变异等步骤。代码详细解释了每一步的实现方式,对比了与Python实现的差异,并展示了最终的最优解。
该文章已生成可运行项目,


前言

前几天刚用python实现了遗传算法用于求解函数最值,详见遗传算法详解python代码实现以及实例分析然后我又用c语言写了一遍,因为当时老师说只能用c语言,但是他发的实验报告里又说能用python、matlab了,挺奇怪的,没事,写都写完了,分享一下吧。

首先讲一下用c语言和python写这题的一些区别,由于c语言相对于python来说比较底层,所以涉及到的复杂的操作会比较少,但是由于c比python快不止一倍两倍,基本就不用咋考虑性能了,怎么好理解我就怎么写了。

python用一个numpy矩阵就可以表示一个种群了,c语言我是用一个animal结构体数组来表示种群;
python在进行优胜劣汰的时候,是根据适应度转换为对应被抽取的概率然后用numpy.random.choice根据概率进行对应抽取形成新的种群,而c语言里我是通过计算出适应度概率之后计算ceil(适应度概率 * 种群数量),然后以此作为此animal被留下的数量。
主要是一些细节的不同,整体思路是完全一致的。


实例代码解释

在这里插入图片描述

1.初始化参数以及变量设置

#include<bits/stdc++.h>
using namespace std;
# define Int_bit 3  // 整数占的bit位
# define DNA_bit  16 // 一个DNA的二进制位数,(第一维表示符号位)
# define DNA_num 2  // DNA的个数
# define animal_num 200 // 开始种群的数量 
# define cross_rate 0.8 // 生殖交叉概率
# define variation_rate 0.005  // 变异的概率
# define generator_n 100 // 种群演变的次数
int limit_area[2] = {
   
   0, 10}; // 值域

struct animals{
   
   //存储x, y两个二进制表示 
	int DNA[DNA_bit * DNA_num];
}animal[animal_num], selected_animal[animal_num];


struct DNA_results{
   
   //二进制转化为十进制的结果存储 
	double translated_result[DNA_num];
}DNA_result[animal_num]; 

struct fitnesses{
   
   //每个animal的适应度计算 
	double p;
	int id;
}fitness[animal_num];

参数设置和python那篇是一样的。

2.定义环境(定义目标函数)

double f(double x, double y){
   
    
	return (6.452 * (x+0.125*y) * pow(cos(x)-cos(2*y), 2)) / (pow(0.8+pow(x-4.2, 2) + 2*pow(y-7, 2), 0.5))+ 3.226*y;
}

3.DNA解码(计算x,y)

void DNA2to10(int n){
   
   //将二进制解码为十进制 
	for(int i=0; i<DNA_num; i++){
   
   
		double sum = 0;
		int base = i * DNA_bit;
		double sign = animal[n].DNA[base];
		double flag;
		if(sign == 0)flag = -1;
		else flag = 1;
		for(int j=base+1; j<=base+Int_bit; j++){
   
   
			if(animal[n].DNA[j] == 1)sum += pow(2, Int_bit+base-j);
		}
		for(int j=base+Int_bit+1; j<DNA_bit+base; j++){
   
   
			if(animal[n].DNA[j] == 1)sum += pow(2, Int_bit+base-j);
		}
		DNA_result[n].translated_result[i] = sum * flag;
	}
}

4.初始化种群(初始化解,考虑定义域)

srand((unsigned)time(NULL));//时间随机 
	for(int i=0; i<animal_num; i++){
   
   //初始化种群 
		for(int j=0; j<DNA_bit * DNA_num; j++){
   
   
			animal[i].DNA[j] = rand()%2;
		}
	}
	for(int i=0; i<animal_num; i++){
   
   //如果有不符合定义域的就再生成一遍 
		for(int j=0; j<DNA_bit * DNA_num; j++){
   
   
			animal[i].DNA[j] = rand()%2;
		}
		if(flag_limit_area(limit_area, i) != 1)i-=1;
	}

5.计算适应度(计算误差,考虑定义域)

//适应度排序的方法(带着id然后按适应度排序
int cmp
本文章已经生成可运行项目
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Icy Hunter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值