POJ - 3070 Fibonacci(矩阵快速幂)

POJ - 3070 Fibonacci(矩阵快速幂)

斐 波 那 契 数 列 第 N 项 斐波那契数列第N项 N
F 0 = 0 , F 1 = 1 , F n = F n − 1 + F n − 2 F0 = 0, F1 = 1, Fn = Fn − 1 + Fn − 2 F0=0,F1=1,Fn=Fn1+Fn2
2 < = n < = 1 , 000 , 000 , 000 2<=n <=1,000,000,000 2<=n<=1,000,000,000
并 且 对 结 果 进 行 10000 取 模 并且对结果进行10000取模 10000

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct Matrix
{
	int m[2][2];
};
int n;
Matrix Multi(Matrix b,Matrix c)
{
	Matrix res;
	memset(res.m,0,sizeof res.m);
	for(int i=0;i<2;i++)
		for(int j=0;j<2;j++)
			for(int k=0;k<2;k++)
				res.m[i][j]=(res.m[i][j]+b.m[i][k]%10000*c.m[k][j]%10000)%10000;
		return res;
}
int fastpow(Matrix a,int n)
{
	Matrix res;
	memset(res.m,0,sizeof res.m);
	for(int i=0;i<2;i++) res.m[i][i]=1;
	
	while(n)
	{
		if(n&1) res=Multi(res,a);
		a=Multi(a,a);
		n>>=1;
	}
	return res.m[0][1];
}
int main()
{
	while(scanf("%d",&n)!=EOF)
	{
		if(n==-1) break;
		Matrix a;
		memset(a.m,0,sizeof a);
		a.m[0][0]=1;a.m[0][1]=1;a.m[1][0]=1;
		printf("%d\n",fastpow(a,n));
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wa_Automata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值