POJ - 3070 Fibonacci(矩阵快速幂)
斐
波
那
契
数
列
第
N
项
斐波那契数列第N项
斐波那契数列第N项
F
0
=
0
,
F
1
=
1
,
F
n
=
F
n
−
1
+
F
n
−
2
F0 = 0, F1 = 1, Fn = Fn − 1 + Fn − 2
F0=0,F1=1,Fn=Fn−1+Fn−2
2
<
=
n
<
=
1
,
000
,
000
,
000
2<=n <=1,000,000,000
2<=n<=1,000,000,000
并
且
对
结
果
进
行
10000
取
模
并且对结果进行10000取模
并且对结果进行10000取模
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct Matrix
{
int m[2][2];
};
int n;
Matrix Multi(Matrix b,Matrix c)
{
Matrix res;
memset(res.m,0,sizeof res.m);
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
res.m[i][j]=(res.m[i][j]+b.m[i][k]%10000*c.m[k][j]%10000)%10000;
return res;
}
int fastpow(Matrix a,int n)
{
Matrix res;
memset(res.m,0,sizeof res.m);
for(int i=0;i<2;i++) res.m[i][i]=1;
while(n)
{
if(n&1) res=Multi(res,a);
a=Multi(a,a);
n>>=1;
}
return res.m[0][1];
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==-1) break;
Matrix a;
memset(a.m,0,sizeof a);
a.m[0][0]=1;a.m[0][1]=1;a.m[1][0]=1;
printf("%d\n",fastpow(a,n));
}
return 0;
}