POJ - 3264 Balanced Lineup(RMQ倍增,线段树)

POJ - 3264 Balanced Lineup(RMQ倍增,线段树)

RMQ倍增

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int M = 16, N = 1 << M;
int n, m;
int w[N], f[N][M], g[N][M];
void init()
{
	for (int i = 1; i <= n; i ++) f[i][0] = w[i];
	for (int j = 1; (1 << j) <= n; j ++ )
		for (int i = 1; i + (1 << j) - 1 <= n; i ++ )
			f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);

	for (int i = 1; i <= n; i ++) g[i][0] = w[i];
	for (int j = 1; (1 << j) <= n; j ++ )
		for (int i = 1; i + (1 << j) - 1 <= n; i ++ )
			g[i][j] = min(g[i][j - 1], g[i + (1 << (j - 1))][j - 1]);
}
int query_max(int l, int r)
{
	int len = r - l + 1;
	int k = log(len) / log(2);
	return max(f[l][k], f[r - (1 << k) + 1][k]);
}
int query_min(int l, int r)
{
	int len = r - l + 1;
	int k = log(len) / log(2);
	return min(g[l][k], g[r - (1 << k) + 1][k]);
}
int main()
{
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++) scanf("%d", &w[i]);
	init();
	while (m--)
	{
		int l, r;scanf("%d%d", &l, &r);
		printf("%d\n", query_max(l, r) - query_min(l, r));
	}
	return 0;
}

线段树

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000010;
struct Node
{
    int l,r;
	int maxx,minn;
}tr[N*4];
void bulid(int u,int l,int r)
{
    if(l==r) tr[u]=(Node){l,r,0,0};
    else
    {
    	tr[u]=(Node){l,r,0,0};
	    int mid=(tr[u].l+tr[u].r)>>1;
	    bulid(u<<1,l,mid);
		bulid(u<<1|1,mid+1,r);
	}
}
void pushup(int u)
{
    tr[u].maxx=max(tr[u<<1].maxx,tr[u<<1|1].maxx);
    tr[u].minn=min(tr[u<<1].minn,tr[u<<1|1].minn);
}
void modify(int u,int x,int w)
{
    if(tr[u].l==x&&tr[u].r==x) tr[u].maxx=tr[u].minn=w;
    else 
    {
        int mid=(tr[u].l+tr[u].r)>>1;
        if(x<=mid) modify(u<<1,x,w);
        if(x>mid) modify(u<<1|1,x,w);
        pushup(u);
    }
}
int query_max(int u,int l,int r)
{
    if(tr[u].l>=l&&tr[u].r<=r) return tr[u].maxx;
    else
    {
	    int mid=(tr[u].l+tr[u].r)>>1;
		int res=0;
	    if(l<=mid) res=max(res,query_max(u<<1,l,r));
	    if(r>mid) res=max(res,query_max(u<<1|1,l,r));
	    return res;	
	}
}
int query_min(int u,int l,int r)
{
    if(tr[u].l>=l&&tr[u].r<=r) return tr[u].minn;
    else
    {
	    int mid=(tr[u].l+tr[u].r)>>1;
		int res=1e9;
	    if(l<=mid) res=query_min(u<<1,l,r);
	    if(r>mid) res=min(res,query_min(u<<1|1,l,r));
	    return res;
	}
}
int main()
{
    int n,m;scanf("%d%d",&n,&m);
    bulid(1,1,n);
    for(int i=1;i<=n;i++)
    {
        int x;scanf("%d",&x);
        modify(1,i,x);
    }
    while(m--)
    {
        int x,y;scanf("%d %d",&x,&y);
        printf("%d\n",query_max(1,x,y)-query_min(1,x,y));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wa_Automata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值