eg1
【题目解析】:
本题的重点是要读懂题意,并且需要多读两遍,才能读懂,本题本质就是在二维数组中每个坐标去放蛋糕,一个坐标位置放了蛋糕,跟他欧几里得距离为2的位置不能放蛋糕,这个就是关键点。对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为: ( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) 的算术平方根
也就是说:如果(x1,y1)放了蛋糕,则满足 ( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) == 4的(x2,y2)不能放蛋糕。
( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) == 4看起来是一个无解的表达式。
但是可以进行加法表达式分解:
1+3=4
3+1=4
2+2=4
0+4=4
4+0=4
【解题思路】:
仔细读理解了上面的题目解读,本题就非常简单了,使用vector<vector>定义一个二维数组,resize开空间并初始化,每个位置初始化为1,表示当蛋糕,a[i][j]位置放蛋糕,则可以标记处a[i][j+2]和a[i+1][j]位置不能放蛋糕,遍历一遍二维数组,标记处不能放蛋糕的位置,统计也就统计出了当蛋糕的位置数。
#include <iostream>
#include <vector>
using namespace std;
int main()
{
int W = 0;
int H = 0;
int count = 0;
cin >> W >> H;
vector<vector<int>> arr;
arr.resize(W);
//全部初始化为1
for(auto& e : arr)
{
e.resize(H, 1);
}
for(int i = 0; i < W; ++i)
{
for(int j = 0; j < H; ++j)
{
if(arr[i][j] == 1)
{
++count;
//当前格子放蛋糕, 欧几里得举例为2的不放蛋糕
if(j + 2 < H)
{
arr[i][j+2] = 0;
}
if(i + 2 < W)
{
arr[i+2][j] = 0;
}
}
}
}
cout << count << endl;
return 0;
}
eg2
【解题思路】:
解题思路非常简单,就是上次计算的结果10,相当于10进制进位,然后加当前位的值。
例如:“123”转换的结果是
sum=0
sum10+1->1
sum10+2->12
sum10+3->123
本题的关键是要处理几个关键边界条件:
- 空字符串
- 正负号处理
- 数字串中存在非法字符
class Solution {
public:
int StrToInt(string str){
if(str.empty())
return 0;
int symbol = 1;
if(str[0] == '-') //处理负号
{
symbol = -1;
str[0] = '0'; //这里是字符'0',不是0
}
else if(str[0] == '+') //处理正号
{
symbol = 1;
str[0] = '0';
}
int sum = 0;
for(int i=0;i<str.size();++i)
{
if(str[i] < '0' || str[i] > '9')
{
sum = 0;
break;
}
sum = sum *10 + str[i] - '0';
}
return symbol * sum;
}
};