数据结构与算法的再学习一 --follow 王争

数据结构与算法

概念:

广义上讲,数据结构就是指一组数据的存储结构,算法就是操作数据的一组方法。
狭义上讲,指某些著名的数据结构和算法。

数据结构与算法的关系

数据结构是为算法服务的,算法要作用在特定的数据结构之上。
数据结构是静态的,它只是组织数据的一种方式,如果不在它的基础之上操作、构建算法,孤立存在的数据结构就是没用的。

学习内容

  1. 储存和处理数据的效率和资源消耗的度量方法–复杂度
  2. 学习数据结构和算法的来历、特点、适合解决的问题以及在实际工作中的应用

一、 复杂度分析

如何分析、统计算法的执行效率和资源消耗

1.1、为什么需要复杂度分析?

事后统计法
  1. 测试结果非常依赖测试环境
  2. 测试结果受数据规模的影响很大

所以我们需要一个不用具体的测试数据来测试,就能粗略地估算算法的执行效率的方法。
大O复杂度表示法
T(n):代码的执行时间
n:数据规模的大小
f(n):每行代码执行的次数总和
所有代码的执行时间T(n)与每行代码的执行次数n成正比
大O时间复杂度表示法实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以也叫作渐进时间复杂度,简称时间复杂度。

1.2、时间复杂度分析
  1. 只关注循环执行次数最多的一段代码
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

几种常见的时间复杂度案例分析

  1. 多项式量级和非多项式量级
    非多项式量级:O(2^n)和O(n!)
    当数据规模n越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。
  2. 多项式时间复杂度
  • O(1)
    只要代码的执行时间不随着n的增大而增大,这种代码的时间复杂度就记作O(1)。一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行代码,时间复杂度也是O(1)。
  • O(logn)、O(nlogn)
  1. 对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。可以把所有对数阶的时间复杂度都记为O(logn)。对数之间可以互相转换,常量 * longn 。
  2. 时间复杂度为O(logn)的代码执行n次时间复杂度就是O(nlogn)了,归并排序、快速排序的时间复杂度都是O(nlogn)。
  • O(m+n)、O(m*n)
  1. 代码的复杂度由两个数据的规模来决定,事先无法评估谁的量级大,所以无法省略掉其中一个,使用O(m+n) 。
  2. 代码的复杂度由两个数据的规模来决定,使用O(m*n)。
1.3、空间复杂度分析

空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。

void print(int n) {
  int i = 0;
  int[] a = new int[n];
  for (i; i <n; ++i) {
    a[i] = i * i;
  }
 
  for (i = n-1; i >= 0; --i) {
    print out a[i]
  }
}

第 2 行代码中,我们申请了一个空间存储变量 i,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n)。
我们常见的空间复杂度就是O(1)、O(n)、O(n^2),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。

1.4、最好、最坏情况时间复杂度
// n 表示数组 array 的长度
int find(int[] array, int n, int x) {
  int i = 0;
  int pos = -1;
  for (; i < n; ++i) {
    if (array[i] == x) {
       pos = i;
       break;
    }
  }
  return pos;
}

最好:在最理想的情况下,执行这段代码的时间复杂度
最坏:在最糟糕的情况下,执行这段代码的时间复杂度
查找变量x在数组中的位置,x在数组的第一个位置,对应的时间复杂度就是最好情况时间复杂度,数组中不存在变量x,对应的时间复杂度就是最坏情况时间复杂度。

1.5、平均情况时间复杂度

要查找的变量x在数组中的位置,有n+1种情况:在数组的0~n-1位置中和不在数组中。把每种情况,需要遍历的元素个数累加起来,然后再除以n+1,就可以得到需要遍历的元素个数的平均值。
使用大O标记法得到的平均时间复杂度还是O(n)
我们还需要考虑各种情况出现的概率,将每种情况发生的概率也加进去得到(加权平均时间复杂度)。

1.5、均摊时间复杂度

极特殊情况下才会用到。
使用摊还分析法进行分析

 // array 表示一个长度为 n 的数组
 // 代码中的 array.length 就等于 n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }
 
    array[count] = val;
    ++count;
 }

n-1个O(1)插入操作之后紧跟着一个O(n)的插入操作,循环往复。将耗时多的一次操作均摊到n-1次耗时少的操作上,均摊下来,一组连续的操作的均摊时间复杂度就是O(1)。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北城三十七

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值