离考研39天【复盘总结】

本文探讨了数学中的中值定理在寻找函数最大最小值时的应用,以及如何在缺乏一阶导数信息时通过构造辅助函数或使用罗尔定理解决问题。同时,介绍了泰勒公式在处理等式时的两种情况,包括无中值和带有中值的情况,并讲解了如何通过拉格朗日余项来展开和比较。此外,内容还涉及了在处理多变量导数问题时使用柯西和拉格朗日定理的策略。
摘要由CSDN通过智能技术生成

【数学】:中值定理部分:1、什么时候用介值定理(最大最小值):当题目中没有告诉导数时,用介值定理。 2、当题目中出现二阶导与原函数时,无一阶导,一般需要补阶构造辅助函数或者使用两次罗尔定理进行到二阶。3:当题目中含有非自由变量即常数且有两个导数变量时,要求两变量相同则使用柯西和一次拉格朗日,不要求相同则使用两次拉格朗日定理

            泰勒公式:1.无中值的的等式:先写出拉格朗日余项的泰勒公式,再确定展开点与被展开点,带入展开点,再依次带入被展开点,被展开点至少要有两个式子,最后将两个式子加减即可         2.带中值的,前面的差不多一样,只有在最后,相加减会经过放缩。

【408】:忘记带回来了,跟着明天的一起复盘

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值