本题要求采用prim算法求最小生成树,输出其权值之和。
输入格式:
输入为顶点 顶点 权值,以 0 0 0表示结束
输出格式:
输出为最小生成树的权值大小
输入样例:
0 1 5
1 0 5
0 2 30
2 0 30
0 3 14
3 0 14
1 2 24
2 1 24
2 3 17
3 2 17
1 4 14
4 1 14
1 5 10
5 1 10
4 5 25
5 4 25
2 5 17
5 2 17
3 5 8
5 3 8
0 0 0
结尾无空行
输出样例:
在这里给出相应的输出。例如:
54
结尾无空行
本题的一些做题思路以及存在的问题
由于没有说明边数的上限,有可能是完全图,所以邻接矩阵是首选。图的存贮结构采用邻接矩阵。此
方法是按各个顶点连通的步骤进行,需要用一个顶点集合,开始为空集,以后将以连通的顶点陆续加入
到集合中,全部顶点加入集合后就得到所需的最小生成树,普里姆算法在找最小生成树时,将顶点分
成两类,一类是在查找过程中已经包含在树中的,剩下的是另一类(不包含在树中的)。
这个题有bug,可以卡bug通过,因为只有一个测试点。在这里不做过多赘述。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N=521,INF=0x3f3f3f3f;
int d[N][N],dist[N];
bool st1[N],st2[N];//记录当前点在集合内还是集合外
int n,m;
int prim()
{
memset(dist,0x3f,sizeof dist);
dist[1]=0;
int i,j,res=0;
for(i=0;i<n;i++)//要遍历n个点,找一个最短边权的点
{
int t=-1;// 初始化为没有找到的点
for(j=1;j<=n;j++)
{
if(!st1[j]&&(t==-1||dist[t]>dist[j])) t=j;
}//不是第一个取出的结点 ,并且当前结点的距离为INF,则表示没有和集合中点相连的边
if(dist[t]==INF) return INF;
st1[t]=1;
res += dist[t];
//更新当前最短边权点t到集合的距离(保留最小的值,如果比之前最短t到集合的距离还小,更新)
for(j=1;j<=n;j++)
{
if(!st1[j]) dist[j] = min(dist[j],d[t][j]);
}
}
return res;
}
int main()
{
memset(d,0x3f,sizeof d);
int x,y,z,i,j;
while(~scanf("%d %d %d",&x,&y,&z))
{
if(x==0&&y==0&&z==0) break;
st2[x] = st2[y] = 1;
d[x+1][y+1] = d[y+1][x+1] = min(d[x+1][y+1],z);
}
for(i=0;i<500;i++)
{
if(st2[i]) n++;
}
int t=prim();
cout<<t;
return 0;
}