Pytorch学习笔记(一):Pytorch安装GPU版本(避坑)

本文详细介绍了如何在拥有CUDA环境的Windows系统中安装GPU版PyTorch,包括创建Anaconda虚拟环境、下载对应版本的安装包,并提供了解决下载慢和版本不匹配问题的方法。在安装过程中,强调了需注意CUDA版本与PyTorch版本的兼容性,以及检查Python版本的一致性。
摘要由CSDN通过智能技术生成

目录

一、创建虚拟环境

二、下载安装包

三、遇到的坑


前言

        文章主要介绍安装GPU版本的Pytorch,自己在安装种也遇到了不少坑,在这里一一例举。前提是安装好Anaconda和Pycharm和CUDA。不推荐通过官网获取命令直接安装,如果不换源,下载速度慢,我换了清华源后,下载的CUDA版本的,清华源由于没有CUDA版本,每次都会自动装CPU版本,若想要安装CUDA版本的推荐离线安装。

一、创建虚拟环境

        在开始菜单搜索Anaconda Prompt (Anaconda3)并打开输入以下指令。

conda create -n pytorch python=3.8

        我已经创建所以显示让我是否移除之前创建的。输入activate pytorch激活虚拟环境,如下所示。

二、下载安装包

        打开cmd,输入以下指令,查看自己的CUDA版本。安装的CUDA必须小于等于自己的CUDA当前版本。

nvidia-smi

         可以看到我的CUDA版本为11.2,所以只能安装11.2以下的版本。打开以下链接安装相对应的torch和torchvision版本。

https://download.pytorch.org/whl/torch_stable.html

       比如说我创建的环境python版本为3.8,电脑为64位,下载低于11.2的CUDA,所以下载如下图红圈圈住的版本

        接下来再安装torchvision,它的版本要和自己下的torch版本所对应,对应表如下图所示。我下载的1.9.1的版本,所以对应torchvision的版本为0.10.1,其余也要对应

 

 

         下载完成后把安装包放置C:\Users\你自己的用户名 

         打开刚才创建的虚拟环境利用pip install 安装两个文件,先安装torch再安装torchvision。安装完之后打开python测试。

        显示True表示CUDA可以用,安装成功。


三、遇到的坑

        最好下载安装包再直接安装,用官方命令下载太慢,如果换源还会出现只给你下载cpu版本的现象。

        如果下载的安装包安装的时候出现错误,多半是版本不对应,我下载过程中,自己清楚记得自己创建虚拟环境的python版本为3.8,结果打开之后发现是3.7,把python升级到3.8之后安装就很顺利。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值