数学建模之:层次分析法(AHP)Python代码

该博客介绍了AHP(层次分析法)中的一致性检验过程和权重计算的三种方法——算术平均法、几何平均法和特征值法。通过实例展示了如何使用numpy库进行矩阵运算,计算CI和CR值以判断矩阵是否通过一致性检验,并计算权重向量。
摘要由CSDN通过智能技术生成
import numpy as np
class AHP:
    """
    相关信息的传入和准备
    """

    def __init__(self, array):
        ## 记录矩阵相关信息
        self.array = array
        ## 记录矩阵大小
        self.n = array.shape[0]
        # 初始化RI值,用于一致性检验
        self.RI_list = [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58,
                        1.59]
        # 矩阵的特征值和特征向量
        self.eig_val, self.eig_vector = np.linalg.eig(self.array)
        # 矩阵的最大特征值
        self.max_eig_val = np.max(self.eig_val)
        # 矩阵最大特征值对应的特征向量
        self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real
        # 矩阵的一致性指标CI
        self.CI_val = (self.max_eig_val - self.n) / (self.n - 1)
        # 矩阵的一致性比例CR
        self.CR_val = self.CI_val / (self.RI_list[self.n - 1])

    """
    一致性判断
    """

    def test_consist(self):
        # 打印矩阵的一致性指标CI和一致性比例CR
        print("判断矩阵的CI值为:" + str(self.CI_val))
        print("判断矩阵的CR值为:" + str(self.CR_val))
        # 进行一致性检验判断
        if self.n == 2:  # 当只有两个子因素的情况
            print("仅包含两个子因素,不存在一致性问题")
        else:
            if self.CR_val < 0.1:  # CR值小于0.1,可以通过一致性检验
                print("判断矩阵的CR值为" + str(self.CR_val) + ",通过一致性检验")
                return True
            else:  # CR值大于0.1, 一致性检验不通过
                print("判断矩阵的CR值为" + str(self.CR_val) + "未通过一致性检验")
                return False

    """
    算术平均法求权重
    """

    def cal_weight_by_arithmetic_method(self):
        # 求矩阵的每列的和
        col_sum = np.sum(self.array, axis=0)
        # 将判断矩阵按照列归一化
        array_normed = self.array / col_sum
        # 计算权重向量
        array_weight = np.sum(array_normed, axis=1) / self.n
        # 打印权重向量
        print("算术平均法计算得到的权重向量为:\n", array_weight)
        # 返回权重向量的值
        return array_weight

    """
    几何平均法求权重
    """

    def cal_weight__by_geometric_method(self):
        # 求矩阵的每列的积
        col_product = np.product(self.array, axis=0)
        # 将得到的积向量的每个分量进行开n次方
        array_power = np.power(col_product, 1 / self.n)
        # 将列向量归一化
        array_weight = array_power / np.sum(array_power)
        # 打印权重向量
        print("几何平均法计算得到的权重向量为:\n", array_weight)
        # 返回权重向量的值
        return array_weight

    """
    特征值法求权重
    """

    def cal_weight__by_eigenvalue_method(self):
        # 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重
        array_weight = self.max_eig_vector / np.sum(self.max_eig_vector)
        # 打印权重向量
        print("特征值法计算得到的权重向量为:\n", array_weight)
        # 返回权重向量的值
        return array_weight


if __name__ == "__main__":
    # 给出判断矩阵
    b = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])

    # 算术平均法求权重
    weight1 = AHP(b).cal_weight_by_arithmetic_method()
    # 几何平均法求权重
    weight2 = AHP(b).cal_weight__by_geometric_method()
    # 特征值法求权重
    weight3 = AHP(b).cal_weight__by_eigenvalue_method()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值