Efficientnet_b3-Unet 记录

本文介绍了一种结合EfficientNet_b3与UNet的网络结构,利用EfficientNet_b3强大的特征提取能力替换UNet的下采样部分,提高了整体模型性能。通过详细展示网络构建代码,为读者提供了实现参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文采用Efficientnet_b3作为主干网络替换unet的下采样部分,使网络提取特征更强大

 将红色框的信息替换修改

 

 

搭建上采样block 

import torch
import torch.nn as nn
import torchvision.models as models
from torchsummary import summary

#基本的block
class DecoderBlock(nn.Module):
    def __init__(self,
                 in_channels=512,
                 n_filters=256,
                 kernel_size=3,
                 is_deconv=False,
                 ):
        super().__init__()
 
        if kernel_size == 3:
            conv_padding = 1
        elif kernel_size == 1:
            conv_padding = 0
 
        # B, C, H, W -> B, C/4, H, W
        self.conv1 = nn.Conv2d(in_channels,
                               in_channels // 4,
                               kernel_size,
                               padding=1,bias=False)
        self.norm1 = nn.BatchNorm2d(in_channels // 4)
        self.relu1 = nn.ReLU(inplace=True)
 
        # B, C/4, H, W -> B, C/4, H, W
        if is_deconv == True:
       
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值