EfficientNet使用心得

本文介绍如何在资源有限的环境下,对EfficientNet模型进行本地加载和使用,包括修改源码以支持本地模型文件加载,以及模型在本地环境的安装和使用过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       EfficientNet是目前图像分类中最好的网络之一了,参数数量小(较VGG和Inception都小好几倍),运行速度快,github上的地址为:https://github.com/lukemelas/EfficientNet-PyTorch。对论文的解读可以百度到很多,学习下理论可以,但是对模型的复现和ImageNet的训练,对于我只有2G显存显卡的笔记本电脑来说,还是别做这个梦了。
git下来源码,自己下载了efficientnet-b3模型参数文件(github上速度超慢,49M的文件花了我一个晚上才下完,满满都是泪。虽然码云上也有别人复制过来的仓库,但是全部都只复制了代码,没有作者预训练好的模型参数。),作者说可以直接pip install efficient-pytorch安装,但这样安装后发现有个问题:每次运行都要重新从github上下载模型文件,不能指定模型文件的路径加载。因此对源码做了一点修改,如下。
1、在源码 <EfficientNet-PyTorch-Root>/efficientnet-pytorch/目录下修改utils.py文件,添加自己的函数

def load_local_weights(model,filepath,load_fc=True):
    """ Loads pretrained weights from local file ."""
    if (not os.path.exists(filepath)):
        raise ValueError('%s does not exist.' % filepath)
    state_dict=torch.load(filepath)
    if load_fc:        
        model.load_state_dict(state_dict)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        res = model.load_state_dict(state_dict, strict=False)
        assert set(res.missing_keys) == set(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights'
    print('Loaded pretrained weights for {}'.format(filepath))

2、在源码 <EfficientNet-PyTorch-Root>/efficientnet-pytorch/目录下修改model.py文件,在EfficientNet类中添加如下函数、

    @classmethod
    def from_local_file(cls,model_name,model_file,num_classes=1000):
        """Loads weights parameters from local file"""
        model=cls.from_name(model_name,override_params={'num_classes':num_classes})
        load_local_weights(model,model_file, load_fc=(num_classes==1000))
        return model

3、运行<EfficientNet-PyTorch-Root>/setup.py,重新构建包:

>>>cd <EfficientNet_Root>
>>>python setup.py build
>>>python setup.py install

就将包安装到我的虚拟环境下的库目录下。

4、使用:
from efficientnet_pytorch import EfficientNet
model=EfficientNet.from_local_file('efficientnet-b3',<你的模型文件路径>)
之后就可以用该model进行前向推理了。EfficientNet果然不凡,参数量小,速度相当快,网上随意下了几张图片,都能准确推理出来。随后会将代码和模型文件上传到csdn

### 如何使用 EfficientNet 深度学习模型 #### 安装依赖库 为了能够顺利运行 EfficientNet,在 Python 环境中安装 `efficientnet-pytorch` 是必要的。可以利用 pip 工具来完成这一操作。 ```bash pip install efficientnet-pytorch ``` #### 导入所需模块并初始化模型 一旦环境配置完毕,就可以导入相应的类,并创建一个预训练好的 EfficientNet 实例。这里展示的是加载最基础版本 B0 的方式[^1]: ```python from efficientnet_pytorch import EfficientNet model = EfficientNet.from_pretrained(&#39;efficientnet-b0&#39;) ``` 这段代码会自动下载官方发布的权重文件,并构建好网络结构以便后续调用。 #### 数据预处理 对于输入图片的数据准备阶段,通常需要做如下几件事情:调整大小、裁剪以及归一化等标准化流程。这些步骤确保了图像尺寸匹配预期的要求,并且数值范围处于合理区间内。下面给出了一种常见的做法: ```python import torchvision.transforms as transforms transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), # EfficientNet 默认接受 224x224 大小的图片作为输入 transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) ``` 此处定义了一个转换管道,它接收 PIL Image 对象作为输入,并返回适合传递给神经网络张量形式的结果。 #### 进行预测 当一切就绪之后,便可以通过简单的前向传播过程来进行推理工作。需要注意的是,实际应用时可能还需要考虑批量处理等因素。以下是单张图片分类的一个简单例子: ```python import torch from PIL import Image img = Image.open(&#39;path_to_image.jpg&#39;) # 替换为自己的图片路径 input_tensor = transform(img).unsqueeze_(0) with torch.no_grad(): outputs = model(input_tensor) _, predicted_class_idx = torch.max(outputs.data, 1) print(f&#39;Predicted class index: {predicted_class_idx.item()}&#39;) ``` 上述脚本读取指定位置的一幅 JPEG 文件,经过之前设定好的变换后送入已经加载过的 EfficientNet 中计算得分最高的类别编号。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值