泰勒公式是微积分中的一个重要工具,用于将一个函数在某一点附近展开成多项式形式,以便于近似计算和分析。泰勒公式的一般形式为:
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) f(x)=f(a)+f′(a)(x−a)+2!f′′(a)(x−a)2+⋯+n!f(n)(a)(x−a)n+Rn(x)
其中, R n ( x ) R_n(x) Rn(x) 是余项,表示泰勒多项式与原函数之间的误差。余项有两种常见的形式:拉格朗日余项和佩亚诺余项。
拉格朗日余项
拉格朗日余项给出了泰勒展开式中误差的精确表达式。对于一个 n n n 次泰勒展开式,拉格朗日余项的形式为:
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}