如何理解 IEEE 754 单精度浮点型能表示的最小绝对值、最大绝对值


解答

IEEE 754单精度浮点数使用32位来表示一个数值,其格式如下:

  • 1位符号位(S):表示数值的正负,0表示正数,1表示负数。
  • 8位指数位(E):表示指数部分,使用偏移量127的表示方法。
  • 23位尾数位(M):表示小数部分,隐含一个前导1。

根据这个格式可以计算出IEEE 754单精度浮点数能表示的最小绝对值和最大绝对值。


最小绝对值

最小绝对值是指能够表示的最接近于零的正数。对于IEEE 754单精度浮点数,最小绝对值对应于最小指数和最小尾数。

  • 最小指数:指数位全为0,表示非规格化数。非规格化数的指数偏移量为126(而不是127),所以最小指数为 ( E = 1 - 127 = -126 )。
  • 最小尾数:尾数位全为0,但非规格化数没有隐含的前导1,所以最小尾数为 ( 0.00000000000000000000001 )(即 ( 2^{-23} ))。

因此,最小绝对值为:

V = 2 − 126 × 2 − 23 = 2 − 149 V = 2^{-126} \times 2^{-23} = 2^{-149} V=2126×223=2149


最大绝对值

最大绝对值 是指能够表示的最大正数。对于IEEE 754单精度浮点数,最大绝对值对应于最大指数和最大尾数。

  • 最大指数:指数位全为1,表示无穷大或NaN(非数值)。最大有效指数为
    E = 254 − 127 = 127 E = 254 - 127 = 127 E=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值