机器学习笔记 第七章贝叶斯分类器

7.1  贝叶斯决策论

        贝叶斯决策论是概率框架下实施决策的基本方法.对分类任务来说,在所有相关概率都己知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。给定N个类别,令\lambda _{ij}代表将第j类样本误分类为第i类所产生的损失,则基于后验概率将样本x分到第i类的条件风险为:

        为最小化总体风险,只需在每个样本上选择那个能使条件风险R(c|x)最小的类别标记,即贝叶斯判定准则:

        h^{*}称为贝叶斯最优分类器,其总体风险称为贝叶斯风险,反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值