1. 引言
随着自动驾驶和智能交通系统的快速发展,交通工具的准确识别已成为智能交通领域的重要课题。基于深度学习的目标检测技术,尤其是YOLO(You Only Look Once)系列模型,已经在诸多领域得到了广泛应用,包括自动驾驶、交通监控、车牌识别等。在本篇博客中,我们将深入探讨如何使用YOLOv10模型对Vehicle Attribute Dataset数据集进行目标检测。
Vehicle Attribute Dataset是一个专注于车辆属性的公开数据集,包含了5个类别:轿车、卡车、公交车、摩托车和自行车。我们将使用YOLOv10模型进行训练、推理,并结合一个UI界面展示车辆目标的实时检测。通过本篇博客,读者将能够掌握如何使用YOLOv10模型进行交通工具识别任务,并在实际应用中部署此技术。
2. Vehicle Attribute Dataset 数据集概述
Vehicle Attribute Dataset数据集是一个包含多种交通工具属性的图像数据集,适用于车辆类别的目标检测。该数据集共包含5个类别,主要针对不同种类的车辆,包括:
- 轿车</