Spark-SQL连接JDBC的方式及代码写法

本文详细介绍了Spark SQL如何与数据源进行交互,包括通用方式加载和保存数据,以及Parquet、JSON、CSV和MySQL的具体操作。通过`spark.read.load`和`df.write.save`方法,配合`format`和`option`参数,实现了对不同数据格式的读取和保存。同时,文章还展示了如何直接在文件上进行SQL查询以及通过JDBC与MySQL数据库的交互。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章内容仅供参考!

一、数据加载与保存

通用方式:

SparkSQL 提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL 默认读取和保存的文件格式为parquet

加载数据:

spark.read.load 是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。

spark.read.format("…")[.option("…")].load("…")

➢ format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和

"textFile"。

➢ load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载

数据的路径。

➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable

我们前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,其实,我们也可以直接在文件上进行查询: 文件格式.`文件路径`

spark.sql("select * from json.’/opt/module/data/user.json’").show

保存数据:

df.write.save 是保存数据的通用方法。如果保存不同格式的数据,可以对不同的数据格式进行设定。

df.write.format("…")[.option("…")].save("…")

➢ format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和

"textFile"。

➢ save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。

➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable

保存操作可以使用 SaveMode, 用来指明如何处理数据,使用 mode()方法来设置。

例如:df.write.mode("append").json("/opt/module/data/output")

二、Parquet

Spark SQL 的默认数据源为 Parquet 格式。Par

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值