“RDD、DataFrame、DataSet的概念、区别联系、相互转换操作”

本文深入探讨了Spark中的RDD、DataFrame和DataSet的概念及其区别。RDD是核心抽象,不可变且分区,适合并行计算。DataFrame是带有schema的分布式数据集,提供了优化的执行计划。DataSet是DataFrame的强类型扩展,结合了RDD的灵活性和DataFrame的优化。三者间可通过Spark提供的API相互转换,DataFrame和DataSet支持SQL操作。他们共享惰性机制、缓存和分区概念,但DataFrame和DataSet在易用性和性能上优于RDD。
摘要由CSDN通过智能技术生成

提示:文章内容只供参考!

目录

一、RDD的概念

二、DataFrame 是什么

三、DataSet 是什么

四、创建 DataFrame

五、RDD 转换为 DataFrame

 六、DataFrame 转换为 RDD

七、创建 DataSet

八、RDD 转换为 DataSet

 九、DataSet 转换为 RDD

 十、DataFrame 转换为 DataSet

 十一、DataSet 转换为 DataFrame

 十二、RDD、DataFrame、DataSet 三者的关系

三者的共性

三者的区别


一、RDD的概念

RDD 是Spark的核心抽象,即 弹性分布式数据集residenta distributed dataset)。代表一个不可变,可分区,里面元素可并行计算的集合。其具有数据流模型的特点:自动容错,位置感知性调度和可伸缩性。
Spark中,对数据的所有操作不外乎创建RDD、转化已有RDD以及调用 RDD操作进行求值。

二、DataFrame 是什么

在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中 的二维表格。DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame 所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。

同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要 更加友好,门槛更低。

左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道 该数据集中包含哪些列,每列的名称和类型各是什么。 DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待 DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计 划通过 Spark catalyst optimiser 进行优化。 

三、DataSet 是什么

DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame 的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter 等等)

➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象

➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;

➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到 DataSet 中的字段名称;

➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。

➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将 DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序

四、创建 DataFrame

在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame

有三种方式:通过 Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive

Table 进行查询返回。

从 Spark 数据源进行创建

Spark-SQL支持的数据类型:

➢ 在 spark 的 bin/data 目录中创建 user.json 文件

{"username":"zhangsan","age":20}

{"username":"lisi","age":17}

➢ 读取 json 文件创建 DataFrame

val df = spark.read.json("data/user.json")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值