区间:
因此可以合并为【1,4】,【5,6】,【7,9】
做法:
1.按区间左端点排序
2.扫描区间(左端点从小到大),把所有可能有交集的区间合并
分三种关系:
在内部
原:|------------------------------|
另:|--------|
合:|------------------------------|
有交集
原:|----------------------------------|
另: |-----------------------|
合|----------------------------------------------|
无交集
原:|--------------------|
另: |------------|
例题:
给定 nn 个区间 [li,ri][li,ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。
例如:[1,3][1,3] 和 [2,6][2,6] 可以合并为一个区间 [1,6][1,6]。
输入格式
第一行包含整数 nn。
接下来 nn 行,每行包含两个整数 ll 和 rr。
输出格式
共一行,包含一个整数,表示合并区间完成后的区间个数。
数据范围
1≤n≤1000001≤n≤100000,
−109≤li≤ri≤109−109≤li≤ri≤109
输入样例:
5
1 2
2 4
5 6
7 8
7 9
输出样例:
3
代码:
#include <iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef pair<int,int> PII;
const int N=1e5+10;
int n;
vector<PII> segs;
void merge (vector<PII> &segs)
{
vector<PII> res;
sort(segs.begin(),segs.end()); //按左端点排序
int st=-2e9,ed=-2e9; //初始化区间1,防止传空区间
for(auto seg:segs)
{
if(ed<seg.first) //情况1:区间没有交集,说明我们找到一个新的区间,无法合并
{
if(st!=-2e9) res.push_back({st,ed}); //把区间1存入res(区间:-2e9未存入)
st=seg.first,ed=seg.second; //维护区间2,第一次执行完是第一个区间
}
//情况2:两个区间可以合并,且区间1不包含区间2,区间2不包含区间1
else
{
ed=max(ed,seg.second);//直接更新右端点
}
}
//例如本题,到最后一段的时候由于符合情况2,执行的else所以未能将最后合并的区间存入
//如果最后一段符合情况1,也会只是把前面的一段存入,然后把st和ed更新成最后一段,并未存入,因此我们要单独将最后一个区间存入
if(st!=-2e9) res.push_back({st,ed});// 最后一个区间
segs=res; //把res给segs;
}
int main (){
cin>>n;
for(int i=0;i<n;i++)
{
int l,r;
cin>>l>>r;
segs.push_back({l,r});
}
merge(segs);
cout<<segs.size()<<endl;
return 0;
}