区间合并学习(代码详细)

区间:

因此可以合并为【1,4】,【5,6】,【7,9】

做法:

1.按区间左端点排序

2.扫描区间(左端点从小到大),把所有可能有交集的区间合并

分三种关系:

在内部

原:|------------------------------|

另:|--------|

合:|------------------------------|

有交集

原:|----------------------------------|

另:                        |-----------------------|

合|----------------------------------------------|

无交集

原:|--------------------|

另:                           |------------|

例题:

给定 nn 个区间 [li,ri][li,ri],要求合并所有有交集的区间。

注意如果在端点处相交,也算有交集。

输出合并完成后的区间个数。

例如:[1,3][1,3] 和 [2,6][2,6] 可以合并为一个区间 [1,6][1,6]。

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含两个整数 ll 和 rr。

输出格式

共一行,包含一个整数,表示合并区间完成后的区间个数。

数据范围

1≤n≤1000001≤n≤100000,
−109≤li≤ri≤109−109≤li≤ri≤109

输入样例:

5
1 2
2 4
5 6
7 8
7 9

输出样例:

3

代码:

#include <iostream>
#include<algorithm>
#include<vector>

using namespace std;

typedef pair<int,int> PII;

const int N=1e5+10;

int n;
vector<PII> segs;

void merge (vector<PII> &segs)
{
    vector<PII> res;
    sort(segs.begin(),segs.end()); //按左端点排序
    
    int st=-2e9,ed=-2e9; //初始化区间1,防止传空区间
    for(auto seg:segs)
    {
        if(ed<seg.first)  //情况1:区间没有交集,说明我们找到一个新的区间,无法合并
        {
         if(st!=-2e9) res.push_back({st,ed});  //把区间1存入res(区间:-2e9未存入)
         st=seg.first,ed=seg.second;     //维护区间2,第一次执行完是第一个区间
        }
        //情况2:两个区间可以合并,且区间1不包含区间2,区间2不包含区间1
        else
        {
            ed=max(ed,seg.second);//直接更新右端点
        }
    }
    //例如本题,到最后一段的时候由于符合情况2,执行的else所以未能将最后合并的区间存入
    //如果最后一段符合情况1,也会只是把前面的一段存入,然后把st和ed更新成最后一段,并未存入,因此我们要单独将最后一个区间存入
    if(st!=-2e9) res.push_back({st,ed});// 最后一个区间
    segs=res;    //把res给segs;
}



int main (){
     cin>>n;
     for(int i=0;i<n;i++)
     {
         int l,r;
         cin>>l>>r;
         segs.push_back({l,r});
     }
     merge(segs);
     
     cout<<segs.size()<<endl;
     
     return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值