项目场景:
提示:这里简述项目相关背景:
栈练习题
问题描述:
有效括号字符串为空 “”、"(" + A + “)” 或 A + B ,其中 A 和 B 都是有效的括号字符串,+ 代表字符串的连接。
例如,"","()","(())()" 和 “(()(()))” 都是有效的括号字符串。
如果有效字符串 s 非空,且不存在将其拆分为 s = A + B 的方法,我们称其为原语(primitive),其中 A 和 B 都是非空有效括号字符串。
给出一个非空有效字符串 s,考虑将其进行原语化分解,使得:s = P_1 + P_2 + … + P_k,其中 P_i 是有效括号字符串原语。
对 s 进行原语化分解,删除分解中每个原语字符串的最外层括号,返回 s 。
原因分析:
提示:这里填写问题的分析:
最外层第一个左括号入栈时count为0,不入栈,此时count计算器加1,当count不为0时入栈,最外层最后一个右括号入栈时count先减为0,为0后不入栈,最后将‘\0‘入栈表示字符结尾。
if(count!= 0)放在count++前面才能保证不记录第一个左括号,同理下面count先–使得count先变为0才能不记录最后一个右括号
遇到左括号,当前计数值大于 0 ,则属于有效的左括号。
遇到右括号,当前计数值大于 0,则属于有效的右括号。
解决方案:
提示:这里填写该问题的具体解决方案:
char * removeOuterParentheses(char * s)
{
int count=0,top=-1;
int len=strlen(s);
char* stack=(char*)malloc((len+1)*sizeof(char));//加1?
for(int i=0;i<len;i++)
{
if(s[i]=='(') //第一次'('没有入栈
{
if(count!=0)
{
stack[++top]=s[i];
}
count++;
}
if(s[i]==')')
{
count--;
if(count!=0) //count==0时,外层右括号不会入栈
{
stack[++top]=s[i];
}
}
}
stack[++top]='\0';//字符串结束标记位
return stack;
}