机器学习——决策树

决策树的基本知识(上期的东西有的不细,这次补充一下)

说明:这篇博客是看周志华老师的《机器学习》(西瓜书)的笔记总结,仅供学习交流,不做商业用途。
借鉴未名湖畔的落叶
借鉴致敬大神
借鉴maershii
决策树,顾名思义,是通过一个个的判断来形成一个类似于树状的结构,如图:
在这里插入图片描述
在这里插入图片描述

好了,现在你已经对决策树有了基本的概念,然后我们接着介绍:

熵:一种事务的不确定性。
信息:用来消除不确定的事物。功能有三:调整概率,排除干扰,确定情况。

怎么理解这两个东西呢:这就要用买西瓜(因为西瓜书,所以买西瓜)的例子了,你怎么知道你要买的西瓜是不是熟的呢?这个不确定性就是熵。然后你可能会用瓜的特征来判断,比如:纹理,根蒂,触感,色泽。这些特征就是信息,帮助你判断西瓜是否熟了,是不是理解了信息的作用?

噪音:不能消除某人对某件事情不确定的事务。
数据=信息+噪音

社会上的数据千千万,对你有用的叫信息,无用的是噪音。决策树就是要尽量实现对信息的处理和减弱噪音对数据分析的影响。

熵如何度量:公式:

在这里插入图片描述
例如:你有多枚硬币,你抛n枚,则结果为2^n种,这时熵课量化为n,所以若一种事情的概率是10种,那么熵量化为log2(10)。

简单的了解了熵的量化后,我们开始给出公式:信息熵:

在这里插入图片描述
“信息熵”是度量样本集合纯度最常用的一种指标。假定当前样本集合D中第k类样本所占的比例为pk(k=1,2,……,y)。

注:信息熵的值越小,D的纯度越高。
在这里插入图片描述

主要的决策树算法有:ID3,C4.5,C5.0,CART,CHAID,SLIQ,SPRINT。 因为笔者学习进度限制,这篇博客不会讲全,以后的博客会更新。哈哈

信息增益(决策树ID3训练算法)
在这里插入图片描述

信息增益的计算过程是一个递归的过程,口述反而容易让读者迷糊,请看链接的视频,随博主走一遍,你恍然大悟。看这,致敬大神

增益率(决策树C4.5训练算法):
因为信息增益会对可取值数目较多的属性有所偏好。
所以引入增益率,但是会对可取值数目少的属性有所偏好,C4.5算法流程与ID3相类似,只不过将信息增益改为信息增益比。

在这里插入图片描述
视频讲解,找大神

基尼指数:

在这里插入图片描述

继续看大神生动的讲解,但是视频有错,应该是基尼指数越小,纯度越高,注意理解

剪枝处理:为了防止在训练集上表现的很好,但是在验证集上表现得未必很好,因此要进行剪枝处理。为了提升精度,用剪枝处理判断是否需要继续细分下去。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值