机器学习 ——决策树

这篇博客深入介绍了决策树,从基础知识到实际应用。涵盖了决策树的定义、信息熵与信息增益的概念,ID3算法的原理,以及信息增益率和基尼系数在构建决策树中的作用。此外,还探讨了预剪枝和后剪枝策略,并通过鸢尾花识别案例展示了决策树的实际应用。
摘要由CSDN通过智能技术生成

第1关:什么是决策树

第1题

训练决策树的过程就是构建决策树的过程
ID3算法是根据信息增益来构建决策树
C4.5算法是根据信息增益比来构建决策树
决策树模型的可理解性高

第2题

决策树可以是多叉树。比如买西瓜时有三种情况可供选择:买、不买、待定。此时决策树就不是一棵二叉树。

第2关:信息熵与信息增益

本关任务:掌握什么是信息增益,完成计算信息增益的程序设计。

import numpy as np

def getEnt(array):
    Ent = 0
    for i in range(2
决策树算法是一种广泛应用于分类和回归的机器学习算法,它基于树形结构对样本进行分类或预测。决策树算法的主要思想是通过一系列的判断来对样本进行分类或预测。在决策树中,每个节点表示一个属性或特征,每个分支代表该属性或特征的一个取值,而每个叶子节点代表一个分类或预测结果。 决策树算法的训练过程主要包括以下步骤: 1. 特征选择:根据某种指标(如信息增益或基尼系数)选择最优的特征作为当前节点的分裂属性。 2. 决策树生成:根据选择的特征将数据集分成若干个子集,并递归地生成决策树。 3. 剪枝:通过剪枝操作来提高决策树的泛化性能。 决策树算法的优点包括易于理解和解释、算复杂度较低、对缺失值不敏感等。但是,决策树算法也存在一些缺点,如容易出现过拟合、对离散数据敏感等。 下面是一个决策树算法的案例:假设我们要根据一个人的年龄、性别、教育程度和职业预测其收入水平(高于或低于50K)。首先,我们需要将这些特征进行编码,将其转换为数值型数据。然后,我们可以使用决策树算法对这些数据进行训练,并生成一个决策树模型。最后,我们可以使用该模型对新的数据进行分类或预测。例如,根据一个人的年龄、性别、教育程度和职业,我们可以使用决策树模型预测该人的收入水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值