一、二分
二分查找是一种算法,其输入是一个有序的元素列表(必须是有序的),查找的元素包含在列表中,二分查找返回其位置``
1.整数二分模板
int find(int x)
{
int l=1,r=n;
int mid;
while(l<r)
{
mid=(l+r)/2;
if(x<=a[mid])
r=mid;
else
l=mid+1;
}
if(a[r]==x) return r;
else return -1;
}
void find(int a[N],int x)
{
int l=0,r=n-1;
while(l<r)
{
int mid=(l+r+1)/2;//防止进入死循环,因为mid的值是向下取整
if(a[mid]<=x)
l=mid;
else
r=mid-1;
}
if(a[l]==x)
cout<<"寻找成功且该数的下标为 "<<l;
else
cout<<"-1";
}
2.浮点数二分模板
例题:求一个数的三次方更根(10000内)
#include<iostream>
#include<cstdio>
double x;
using namespace std;
int main()
{
cin>>x;
double l=0,r=10000;
while(r-l>1e-5)
{
double mid=(l+r)/2;
if(mid*mid*mid>=x)
r=mid;
else
l=mid;
}
printf("%.3lf",l);
}
二、前缀和与差分
一维前缀和 b[i]=b[i-1]+a[i]
二维前缀和 b[x][y]=b[x-1][y]+b[x][y-1]-b[x-1][y-1]+a[x][y]
S[i, j] = 第i行j列格子左上部分所有元素的和以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1,y1-1]
差分就是将数列中的每一项分别与前一项数做差
1、差分序列求前缀和可得原序列
2、将原序列区间[L,R]中的元素全部+1,可以转化操作为差分序列L处+1,R+1处-1
3、按照性质2得到,每次修改原序列一个区间+1,那么每次差分序列修改处增加的和减少的相同
例题
输入格式
第一行有两个整数n,p,代表学生数与增加分数的次数。
第二行有n个数,a1~an,代表各个学生的初始成绩。
接下来p行,每行有三个数,x,y,z,代表给第x个到第y个学生每人增加z分。
输出格式
输出仅一行,代表更改分数后,全班的最低分。
#include<iostream>
#include<cstdio>
using namespace std;
const int N=6000000;
int a[N],s[N],c[N];
int n,m;
int t=1<<30;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=a[i]-a[i-1];
}
while(m--)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
s[x]+=z;
s[y+1]-=z;
}
for(int i=1;i<=n;i++)
{
c[i]=c[i-1]+s[i];
t=min(t,c[i]);
}
printf("%d",t);
return 0;
}
二维差分
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c,
S[x2 + 1, y1] -= c,
S[x1, y2 + 1] -= c,
S[x2 + 1, y2 + 1] += c
三、位运算
补码:
1:如果是正数:正数的补码就等于原码。 00000… 111
2:如果是负数:负数的补码就是在反码的基础上加1: 11111. 000 +1=01111… 001
左移: 1<<x 01 10100 1 24左移就是扩大2的倍数。
右移:1>>x1001001421相当于除以2I