第二周学习总结

目录

一 卷积神经网络

1、卷积神经网络的应用

2、传统卷积神经网络vs卷积神经网络

1.2.1深度学习三部曲:

1.2.2二者的不同点

3、卷积神经网络的基本结构 

1.3.1卷积

1.3.2池化

1.3.3全连接

4、卷积神经网络典型结构

1.4.1 AlexNet

 1.4.2 ZFnet

1.4.3 VGG

1.4.4 GoogleNet

1.4.5 ResNet

二 代码一练习

1、加载数据集

         2、创建网络

         3、定义训练和测试函数

         4、分别在小型全连接网络和CNN上训练

2.4.1在小型全连接网络上训练

2.4.2在CNN上训练

5、打乱像素顺序再次在两个网络上训练与测试

2.5.1 在全连接网络上训练与测试

2.5.2 在CNN上训练与测试

三 代码二练习

1、加载并归一化数据集

2、定义网络、损失函数和优化器 

3、训练网络

4、测试

四 代码三练习

1、加载数据

2、创建网络

3、训练网络

4、测试

五 思考问题


一 卷积神经网络

1、卷积神经网络的应用

卷积神经网络广泛应用于图像处理中的分类、检索、检测、分割。人脸识别等领域。

2、传统卷积神经网络vs卷积神经网络

1.2.1深度学习三部曲:

第一步:搭建神经网络结构;

第二步:找到一个合适的损失函数;

 第三步:找到一个合适的优化函数(反向传播,BP;随机梯度下降,SGD),更新参数;

1.2.2二者的不同点

在图像处理任务中,一张图像在计算机看来是有一个个像素点组成,如果使用传统的神经网络对每一个像素点作为原始输入进行全连接,需要学习的参数太多;而卷积神经网络则采用一种局部关联,参数共享的方式减少了所要学习的参数的数量。

3、卷积神经网络的基本结构 

1.3.1卷积

卷积是用一定大小的卷积核对输入图像按照一定的步长进行线性加权求和,并得到一定大小的特征图。它是一个特征提取的过程。

几个基本概念:

输入:原始输入图像(一般是以三维矩阵形式给出)。

卷积核(又称滤波器):指用来特征提取的矩阵(上图共有两个卷积核,每一个的大小是3×3×3)。

权重:指卷积核中每一个参数。

感受野: 经过一次卷积计算后得到的输出对应于原始输入中的大小,即特征图上的一个点对应输入图上的区域。(上图中感受野的大小为3×3)。

特征图:每个卷积核对原始输入进行卷积后会得到一个特征图(上图中有两个特征图)。

padding:中文有填充的意思。为了得到一定大小的特征图或者为了适应步长,亦或者对图像边缘进行跟图像内部同等的处理,对原始输入外围进行补0的操作。

步长(stride):指卷积核每次向右移动的尺度。

特征图大小的计算:

1.3.2池化

主要用于缩小输入的规模,这一层没有参数,知识对输入进行一下数学处理。一般有最大值池化

1.3.3全连接

一般放在卷积神经网络的尾部,每个神经元与前一层所有神经元都有权重链接。参数量非常大。

4、卷积神经网络典型结构

1.4.1 AlexNet

它的主要优势在于训练数据规模极大,达到百万级。使用了非线性激活函数relu函数,使用dropout、数据增强防止过拟合。使用双GPU加速。

DropOut随机失活:训练时随机关闭一些神经元,测试时整合所有神经元。减少了参数的学习数量。

数据增强:

 1.4.2 ZFnet

网络结构与AlexNet相同,卷积层1中感受野大小由11×11改为7×7,步长由4改为2,从而进行了更加精细的特征提取。卷积层3,4,5中卷积核的个数由384,384,256改为512,512,1024。

1.4.3 VGG

增加了网络的深度,VGG16有16层,VGG19有19层。

VGG16每一层的参数数目如下,可以看到参数大多在全连接层中。

1.4.4 GoogleNet

它没有全连接层,所以参数的数量是AlexNet的1/12.

使用多个卷积核增加特征多样性。

对四个卷积核的输出进行层数上的叠加,上图输出特征图为28×28×762.这提高了计算复杂度。

inception v2解决办法:插入1×1卷积核进行降维。

 inception v3解决办法:缩小卷积核的尺寸进行参数数量的减少。

1.4.5 ResNet

 

残差块的思想是将输出与输入进行相加,这样在进行求导时避免了出现导数为0的情况,从而使得网络很深的时候也可进行参数的更新。 

二 代码一练习

1、加载数据集

PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets 即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  • root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件
  • train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download,如果设置为True, 从互联网下载数据并放到root文件夹下
  • transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
  • target_transform 一种函数或变换,输入目标,进行变换。

另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('E:\data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('E:\data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)

数据集包括以下四个文件:

train-images-idx3-ubyte
train-labels-idx1-ubyte
t10k-images-idx3-ubyte
t10k-labels-idx1-ubyte

这是四个二进制文件,idx3表示有三个维度,是数据文件,idx1表示有1个维度,是标签文件。train表示训练用例,t表示测试用例。对于上述二进制文件的解析可参考下述博客。文件解析

2、创建网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__中。

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。pytorch有自动求导机制。


class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

3、定义训练和测试函数

# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

4、分别在小型全连接网络和CNN上训练

2.4.1在小型全连接网络上训练

n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

结果:

2.4.2在CNN上训练

# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

可以发现,含有相同参数的 CNN 效果要明显优于简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过卷积和池化。

5、打乱像素顺序再次在两个网络上训练与测试

 

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')
# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

重新定义训练与测试函数,我们写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。

与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

2.5.1 在全连接网络上训练与测试

perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

结果:

 

2.5.2 在CNN上训练与测试

perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

 结果:

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

 

三 代码二练习

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

首先,加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

1、加载并归一化数据集



import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试是没有必要
trainset = torchvision.datasets.CIFAR10(root='E:\data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=0)

testset = torchvision.datasets.CIFAR10(root='E:\data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

2、定义网络、损失函数和优化器 

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

3、训练网络

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

在训练时将torch.utils.data.DataLoader()函数的num_workers参数修改为0,该参数是指在进行数据集加载时,启用的线程数目。如果为2,则会报错BrokenPipeError: [Errno 32] Broken pipe。

具体细节:报错原因

结果:Epoch: 1 Minibatch:     1 loss: 2.293
Epoch: 1 Minibatch:   101 loss: 1.853
Epoch: 1 Minibatch:   201 loss: 1.662
Epoch: 1 Minibatch:   301 loss: 1.543
Epoch: 1 Minibatch:   401 loss: 1.511
Epoch: 1 Minibatch:   501 loss: 1.511
Epoch: 1 Minibatch:   601 loss: 1.437
Epoch: 1 Minibatch:   701 loss: 1.452
Epoch: 2 Minibatch:     1 loss: 1.570
Epoch: 2 Minibatch:   101 loss: 1.354
Epoch: 2 Minibatch:   201 loss: 1.065
Epoch: 2 Minibatch:   301 loss: 1.144
Epoch: 2 Minibatch:   401 loss: 1.152
Epoch: 2 Minibatch:   501 loss: 1.174
Epoch: 2 Minibatch:   601 loss: 1.422
Epoch: 2 Minibatch:   701 loss: 1.410
Epoch: 3 Minibatch:     1 loss: 1.372
Epoch: 3 Minibatch:   101 loss: 1.398
Epoch: 3 Minibatch:   201 loss: 1.246
Epoch: 3 Minibatch:   301 loss: 1.210
Epoch: 3 Minibatch:   401 loss: 1.276
Epoch: 3 Minibatch:   501 loss: 1.093
Epoch: 3 Minibatch:   601 loss: 1.203
Epoch: 3 Minibatch:   701 loss: 1.543
Epoch: 4 Minibatch:     1 loss: 1.119
Epoch: 4 Minibatch:   101 loss: 1.036
Epoch: 4 Minibatch:   201 loss: 1.326
Epoch: 4 Minibatch:   301 loss: 1.292
Epoch: 4 Minibatch:   401 loss: 1.278
Epoch: 4 Minibatch:   501 loss: 1.220
Epoch: 4 Minibatch:   601 loss: 1.059
Epoch: 4 Minibatch:   701 loss: 0.956
Epoch: 5 Minibatch:     1 loss: 1.204
Epoch: 5 Minibatch:   101 loss: 1.043
Epoch: 5 Minibatch:   201 loss: 1.257
Epoch: 5 Minibatch:   301 loss: 1.018
Epoch: 5 Minibatch:   401 loss: 0.936
Epoch: 5 Minibatch:   501 loss: 1.207
Epoch: 5 Minibatch:   601 loss: 1.067
Epoch: 5 Minibatch:   701 loss: 0.977
Epoch: 6 Minibatch:     1 loss: 1.029
Epoch: 6 Minibatch:   101 loss: 1.130
Epoch: 6 Minibatch:   201 loss: 1.042
Epoch: 6 Minibatch:   301 loss: 1.033
Epoch: 6 Minibatch:   401 loss: 1.023
Epoch: 6 Minibatch:   501 loss: 0.953
Epoch: 6 Minibatch:   601 loss: 1.277
Epoch: 6 Minibatch:   701 loss: 1.231
Epoch: 7 Minibatch:     1 loss: 1.086
Epoch: 7 Minibatch:   101 loss: 1.174
Epoch: 7 Minibatch:   201 loss: 1.020
Epoch: 7 Minibatch:   301 loss: 1.062
Epoch: 7 Minibatch:   401 loss: 1.004
Epoch: 7 Minibatch:   501 loss: 0.917
Epoch: 7 Minibatch:   601 loss: 0.892
Epoch: 7 Minibatch:   701 loss: 1.115
Epoch: 8 Minibatch:     1 loss: 1.109
Epoch: 8 Minibatch:   101 loss: 0.985
Epoch: 8 Minibatch:   201 loss: 1.136
Epoch: 8 Minibatch:   301 loss: 0.797
Epoch: 8 Minibatch:   401 loss: 0.881
Epoch: 8 Minibatch:   501 loss: 0.801
Epoch: 8 Minibatch:   601 loss: 1.052
Epoch: 8 Minibatch:   701 loss: 0.866
Epoch: 9 Minibatch:     1 loss: 1.003
Epoch: 9 Minibatch:   101 loss: 0.884
Epoch: 9 Minibatch:   201 loss: 0.807
Epoch: 9 Minibatch:   301 loss: 0.748
Epoch: 9 Minibatch:   401 loss: 1.235
Epoch: 9 Minibatch:   501 loss: 1.107
Epoch: 9 Minibatch:   601 loss: 1.000
Epoch: 9 Minibatch:   701 loss: 1.024
Epoch: 10 Minibatch:     1 loss: 1.027
Epoch: 10 Minibatch:   101 loss: 0.851
Epoch: 10 Minibatch:   201 loss: 1.095
Epoch: 10 Minibatch:   301 loss: 0.944
Epoch: 10 Minibatch:   401 loss: 1.142
Epoch: 10 Minibatch:   501 loss: 1.094
Epoch: 10 Minibatch:   601 loss: 0.806
Epoch: 10 Minibatch:   701 loss: 0.845

4、测试

从测试集选取八张图像,打印对应标签。

# 得到一组图像
images, labels = iter(testloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

cat
ship
ship
plane
frog
frog
car
frog

图片送入模型,输出预测结果。

outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

cat
ship
ship
plane
frog
frog
cat
frog
预测结果完全正确。

模型在整个测试集上的测试结果

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

Accuracy of the network on the 10000 test images: 61 %。网络结构有待进一步改善。

四 代码三练习

1、加载数据

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='E:\data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='E:\data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

2、创建网络

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(self.cfg)
        self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

3、训练网络

# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

Epoch: 1 Minibatch:     1 loss: 2.499
Epoch: 1 Minibatch:   101 loss: 1.502
Epoch: 1 Minibatch:   201 loss: 1.289
Epoch: 1 Minibatch:   301 loss: 1.309
Epoch: 2 Minibatch:     1 loss: 1.046
Epoch: 2 Minibatch:   101 loss: 0.997
Epoch: 2 Minibatch:   201 loss: 1.131
Epoch: 2 Minibatch:   301 loss: 0.758
Epoch: 3 Minibatch:     1 loss: 0.849
Epoch: 3 Minibatch:   101 loss: 0.757
Epoch: 3 Minibatch:   201 loss: 0.721
Epoch: 3 Minibatch:   301 loss: 0.890
Epoch: 4 Minibatch:     1 loss: 0.783
Epoch: 4 Minibatch:   101 loss: 0.596
Epoch: 4 Minibatch:   201 loss: 0.711
Epoch: 4 Minibatch:   301 loss: 0.490
Epoch: 5 Minibatch:     1 loss: 0.874
Epoch: 5 Minibatch:   101 loss: 0.636
Epoch: 5 Minibatch:   201 loss: 0.602
Epoch: 5 Minibatch:   301 loss: 0.574
Epoch: 6 Minibatch:     1 loss: 0.487
Epoch: 6 Minibatch:   101 loss: 0.610
Epoch: 6 Minibatch:   201 loss: 0.627
Epoch: 6 Minibatch:   301 loss: 0.494
Epoch: 7 Minibatch:     1 loss: 0.452
Epoch: 7 Minibatch:   101 loss: 0.336
Epoch: 7 Minibatch:   201 loss: 0.416
Epoch: 7 Minibatch:   301 loss: 0.547
Epoch: 8 Minibatch:     1 loss: 0.465
Epoch: 8 Minibatch:   101 loss: 0.425
Epoch: 8 Minibatch:   201 loss: 0.541
Epoch: 8 Minibatch:   301 loss: 0.539
Epoch: 9 Minibatch:     1 loss: 0.339
Epoch: 9 Minibatch:   101 loss: 0.335
Epoch: 9 Minibatch:   201 loss: 0.499
Epoch: 9 Minibatch:   301 loss: 0.386
Epoch: 10 Minibatch:     1 loss: 0.416
Epoch: 10 Minibatch:   101 loss: 0.423
Epoch: 10 Minibatch:   201 loss: 0.532
Epoch: 10 Minibatch:   301 loss: 0.407
Finished Training

4、测试

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))

 

五 思考问题

1、dataloader 里面 shuffle 取不同值有什么区别?

shuffle是控制加载数据集时是否打乱数据集的顺序,当shuffle为true时,数据被随即打乱,使得模型的泛化能力能强。一般在加载训练时将其置为true。
2、transform 里,取了不同值,这个有什么区别?

transform用来对数据进行预处理,数据增强。例如数据中心化、数据标准化、缩放、裁剪、旋转、翻转、填充噪声、添加灰度变换、线性变换、仿射变换、亮度饱满度及对比度变换。

CenterCrop 从图像中心裁剪图像
RandomCrop从图片中随即裁剪出给定尺寸的图片(可填充)
RandomHorziontalFlip依概率水平翻转图片
RandomVerticalFlip 依概率垂直翻转图片
RandomRotation随机旋转图片
Resize 修改图像分辨率
ColorJitter调整亮度,对比度,饱和度和色相
Totensor 转化为张量
ToPILImage将ndarray或者张良转化为PIL Image类型数据

转载自:链接
是对训练集进行变换,使训练集更加丰富,从而使模型具有泛化能力。
3、epoch 和 batch 的区别?

   epoch是训练整个训练集的次数。当训练数据很大时,由于内存的限制,数据无法一次性送入训练,于是设置batch,它是每次送入训练的样本数。
4、1x1的卷积和 FC 有什么区别?主要起什么作用?

1x1的卷积对于多个通道进行特征提取。作用是特征提取,调整特征图大小(通过步长),调整通道数等。

全连接将输入展成一个一维向量。它的参数量远大于1x1的卷积。作用一般是放在卷积神经网络最后,用来生成特定大小的输出
5、residual leanring 为什么能够提升准确率?

残差网络将输出与输入相加后作为最终输出,避免了深层网络求导时为0的情况。有效解决梯度消失的问题,使参数不断更新迭代。提升准确度。
6、代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

CNN中的池化层是最大池化,LeNet的池化层中有可训练参数;

CNN使用的是ReLU激活函数,LeNet使用的是sigmoid激活函数;
7、代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

对输出的特征图进行1x1的卷积,调整到与输入同等尺寸。
8、有什么方法可以进一步提升准确率?

增加数据量、数据增强、根据模型预测结果对数据进行改造再进行训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值