第2周学习:卷积神经网络基础

1 绪论

1.1 卷积神经网络的应用

分类:
在这里插入图片描述
检索:
在这里插入图片描述

检测:
在这里插入图片描述

分割:
在这里插入图片描述

人脸识别:
在这里插入图片描述
在这里插入图片描述

图像生成:
在这里插入图片描述

图像风格转化:
在这里插入图片描述

自动驾驶:
在这里插入图片描述

1.2 传统神经网络vs卷积神经网络

深度学习三部曲:

  • Step 1. 搭建神经网络结构
  • Step 2. 找到一个合适的损失函数
  • Step 3. 找到一个合适的优化函数,更新参数

传统神经网络vs卷积神经网络:
在这里插入图片描述
全连接网络处理图像的问题:
参数太多,权重矩阵的参数太多,导致过拟合。
卷积神经网络的解决方式:
局部关联,参数共享
相同之处:都是层级结构
在这里插入图片描述

2 网络基本组成结构

2.1 卷积

什么是卷积:
卷积是对两个实变函数的一种数学操作。在图像处理中,图像是以二维矩阵的形式输入到神经网络的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 池化

Pooling:

  • 保留了主要特征的同时减少参数和计算量,防止过拟合,提高模型泛化能力。
  • 一般处于卷积层与卷积层之间,全连接层与全连接层之间

Pooling的类型:

  • Max pooling: 最大值池化
  • Average pooling: 平均池化

在这里插入图片描述

2.3 全连接

全连接层 / FC layer:

  • 两层之间所有神经元都有权重链接
  • 通常在卷积神经网络尾部
  • 通常参数量最大
    在这里插入图片描述

2.4 小结

  • 卷积网络是由卷积层、池化层、全连接层交叉堆叠而成
  • 局部关联,参数共享
  • 没有padding时输出的特征图大小:(N-F)/stride+1
  • 有padding时输出的特征图大小:(N+padding*2- F)/stride+1
  • Pooling的类型:Max pooling: 最大值池化,Average pooling: 平均池化
  • 全连接:通常全连接层在卷积神经网络尾部

3 卷积神经网络典型结构

3.1 AlexNet

AlexNet 是具有历史意义的一个网络结构,在AlexNet之前,深度学习已经沉寂了很久。历史的转折在2012年到来,AlexNet
在当年的ImageNet图像分类竞赛中,错误率比上一年的冠军下降了十个百分点,而且远远超过当年的第二名。

模型结构:
在这里插入图片描述

  • 大数据训练:百万级ImageNet图像数据
  • 非线性激活函数:ReLU(解决了梯度消失的问题,计算、收敛速度特别快)
  • 防止过拟合:Dropout, Data augmentation

DropOut(随机失活)
训练时随机关闭部分神经元,测试时整合所有神经元
在这里插入图片描述
Data augmentation(数据增强)

  • 平移、翻转、对称
    随机crop,训练时对于256*256的图片进行随机crop到224*224。
    水平翻转,将样本倍增。
  • 改变RGB通道强度
    对RGB空间做一个高斯扰动。

AlexNet分层解析:
在这里插入图片描述

  1. 第一次卷积:卷积 - ReLU - 池化
  2. 第二次卷积:卷积 – ReLU - 池化
  3. 第三次卷积:卷积 - ReLU
  4. 第四次卷积:卷积 - ReLU
  5. 第五次卷积:卷积 – ReLU – 池化
  6. 第六层:全连接 – ReLU – DropOut
  7. 第七层:全连接 – ReLU – DropOut
  8. 第八层:全连接 – SoftMax

参数数量:
在这里插入图片描述

ZFNet:2013年ImageNet图像分类竞赛的冠军

  • 网络结构与AlexNet相同
  • 将卷积层1中的感受野大小由1111改为77,步长由4改为2
  • 卷积层3,4,5中的滤波器个数由384,384,256改为512,512,1024

3.2 VGG

VGG是一个更深网络
8 layers (AlexNet) -> 16 – 19 (VGG)

VGG16:
在这里插入图片描述

3.3 GoogleNet

2014年ImageNet图像分类竞赛的冠军
ImageNet top 5 error: 11.7% -> 6.7%
网络包含22个带参数的层,独立成块的层总共有约有100个;参数量大概是Alexnet的1/12;没有FC层

多卷积核增加特征多样性:
在这里插入图片描述
但是会导致复杂度过高,可以插入1*1卷积核进行降维。
在这里插入图片描述
Inception V3 进一步对 Inception V2的参数数量进行降低,用小的卷积核替代大的卷积核。

优点

  • 降低参数量
  • 增加非线性激活函数:增加非线性激活函数使网络产生更多独立特(disentangled feature),表征能力更强,训练更快。

GoogleNet
在这里插入图片描述

  • Stem部分(stem network):卷积 – 池化 – 卷积 – 卷积 – 池化
  • 多个Inception结构堆叠
  • 没有额外的全连接层(除了最后的类别输出层)
  • 辅助分类器:解决由于模型深度过深导致的梯度消失的问题。

3.4 ResNet

  • 残差学习网络(deep residual learning network)
  • 2015年ILSVRC竞赛冠军,错误率从6.7% -> 3.57%
  • 深度有152层,除了输出层之外没有其他全连接层。

残差: 去掉相同的主体部分,突出微小的变化。可以用来训练非常深的网络。
在这里插入图片描述

4 代码练习

4.1 CNN对 MNIST 分类

加载数据: PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用torchvision.datasets 即可把这些数据由远程下载到本地。

  • root 为数据集下载到本地后的根目录,包括 training.pt 和 test.pt 文件
  • train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  • download,如果设置为True, 从互联网下载数据并放到root文件夹下
  • transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
  • target_transform 一种函数或变换,输入目标,进行变换。

DataLoader 的常用操作有:batch_size(每个batch的大小), shuffle(是否进行随机打乱顺序), num_workers(加载数据的时候使用几个子进程)

input_size = 28*28     # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True, 
        transform=transforms.Compose(
          [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )
    ),
    batch_size=64, shuffle=True
)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, 
        transform=transforms.Compose(
          [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )
    ),
    batch_size=1000, shuffle=True
)
#显示数据集中的部分图像
plt.figure(figsize=(8, 5))
for i in range(20):
  plt.subplot(4, 5, i+1)
  image, _ = train_loader.dataset.__getitem__(i)
  plt.imshow(image.squeeze().numpy(), 'gray')
  plt.axis('off');

在这里插入图片描述

#创建网络
#定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数init中。
#只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)

class FC2Layer(nn.Module):
  def __init__(self, input_size, n_hidden, output_size):
    super(FC2Layer, self).__init__()
    self.input_size = input_size

    self.network = nn.Sequential(
      nn.Linear(input_size ,n_hidden),
      nn.ReLU(), 
      nn.Linear(n_hidden, n_hidden), 
      nn.ReLU(), 
      nn.Linear(n_hidden, output_size), 
      nn.LogSoftmax(dim=1)
    )
  def forward(self, x):
    x = x.view(-1, self.input_size)  #多维的数据展成二维
    return self.network(x)

class CNN(nn.Module):
  def __init__(self, input_size, n_feature, output_size):
    super(CNN, self).__init__()
    
    # 下面是网络结构的一些定义,一般就是卷积和全连接。池化、ReLU一类的不用在这里定义 
    self.n_feature = n_feature
    self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
    self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
    self.fc1 = nn.Linear(n_feature*4*4, 50)
    self.fc2 = nn.Linear(50, 10)

  # 下面的 forward 函数按照一定顺序,把上面构建的一些结构组织起来
  def forward(self, x, verbose=False):
    x = self.conv1(x)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2)
    x = self.conv2(x)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2)
    x = x.view(-1, self.n_feature*4*4)
    x = self.fc1(x)
    x = F.relu(x)
    x = self.fc2(x)
    x = F.log_softmax(x, dim=1)
    return x

# 训练函数
def train(model):
  model.train()
  # 从train_loader里,64个样本一个batch为单位提取样本进行训练
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = data.to(device), target.to(device)
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()

    if batch_idx % 100 == 0:
      print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
          batch_idx * len(data), len(train_loader.dataset), 
          100. * batch_idx / len(train_loader), loss.item())
      )

# 测试函数
def test(model):
  model.eval()
  test_loss = 0
  correct = 0
  for data, target in test_loader:
    data, target = data.to(device), target.to(device)
    output = model(data)
    # 计算本次batch的损失,并加到 test_loss 中
    test_loss += F.nll_loss(output, target, reduction='sum').item()
    #最后一层输出10个数,值最大的对应分类结果,把分类结果保存在 pred 里
    pred = output.data.max(1, keepdim=True)[1]
    # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
    # view_as 把维度 target 变成和 pred 一样的
    correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

  test_loss /= len(test_loader.dataset)
  accuracy = 100. * correct / len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset), accuracy))

#在小型全连接网络上训练
n_hidden = 8

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

Number of parameters: 6442
Train: [0/60000 (0%)] Loss: 2.335834
Train: [6400/60000 (11%)] Loss: 1.958780
Train: [12800/60000 (21%)] Loss: 1.265659
Train: [19200/60000 (32%)] Loss: 1.040448
Train: [25600/60000 (43%)] Loss: 0.640174
Train: [32000/60000 (53%)] Loss: 0.634530
Train: [38400/60000 (64%)] Loss: 0.577163
Train: [44800/60000 (75%)] Loss: 0.374181
Train: [51200/60000 (85%)] Loss: 0.977896
Train: [57600/60000 (96%)] Loss: 0.304770

Test set: Average loss: 0.4282, Accuracy: 8778/10000 (88%)

#在卷积神经网络上训练
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

Number of parameters: 6422
Train: [0/60000 (0%)] Loss: 2.307476
Train: [6400/60000 (11%)] Loss: 1.915347
Train: [12800/60000 (21%)] Loss: 0.891418
Train: [19200/60000 (32%)] Loss: 0.580535
Train: [25600/60000 (43%)] Loss: 0.354961
Train: [32000/60000 (53%)] Loss: 0.463352
Train: [38400/60000 (64%)] Loss: 0.304758
Train: [44800/60000 (75%)] Loss: 0.135093
Train: [51200/60000 (85%)] Loss: 0.204932
Train: [57600/60000 (96%)] Loss: 0.147063

Test set: Average loss: 0.2107, Accuracy: 9375/10000 (94%)

通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN 能够更好的挖掘图像中的信息,主要通过两个手段:

  • 卷积:Locality and stationarity in images
  • 池化:Builds in some translation invariance
#打乱像素顺序再次在两个网络上训练与测试
#考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样卷积和池化就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

#随机打乱像素顺序
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

在这里插入图片描述

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
#在全连接网络上训练与测试
perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

Number of parameters: 6442
Train: [0/60000 (0%)] Loss: 2.322486
Train: [6400/60000 (11%)] Loss: 1.869724
Train: [12800/60000 (21%)] Loss: 1.188228
Train: [19200/60000 (32%)] Loss: 0.897968
Train: [25600/60000 (43%)] Loss: 0.820452
Train: [32000/60000 (53%)] Loss: 0.846537
Train: [38400/60000 (64%)] Loss: 0.772324
Train: [44800/60000 (75%)] Loss: 0.519597
Train: [51200/60000 (85%)] Loss: 0.504936
Train: [57600/60000 (96%)] Loss: 0.516461

Test set: Average loss: 0.4748, Accuracy: 8553/10000 (86%)

#在卷积神经网络上训练与测试
perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

Number of parameters: 6422
Train: [0/60000 (0%)] Loss: 2.333514
Train: [6400/60000 (11%)] Loss: 2.296374
Train: [12800/60000 (21%)] Loss: 2.173971
Train: [19200/60000 (32%)] Loss: 1.680004
Train: [25600/60000 (43%)] Loss: 1.109356
Train: [32000/60000 (53%)] Loss: 0.834177
Train: [38400/60000 (64%)] Loss: 0.748536
Train: [44800/60000 (75%)] Loss: 0.792379
Train: [51200/60000 (85%)] Loss: 0.854299
Train: [57600/60000 (96%)] Loss: 0.589285

Test set: Average loss: 0.5845, Accuracy: 8157/10000 (82%)

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

4.2 CNN 对 CIFAR10 分类

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’,‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。cifar
包含10个类的60000张32x32的彩色图像,每个类有6000张图像.有50000张训
练图像和10000张测试图像

加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的
PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。
input[channel] = (input[channel] - mean[channel]) / std[channel]

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
                    download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, 
                      shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                    download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                    shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

#展示 CIFAR10 里面的一些图片
def imshow(img):
  plt.figure(figsize=(8,8))
  img = img / 2 + 0.5     # 转换到 [0,1] 之间
  npimg = img.numpy()
  plt.imshow(np.transpose(npimg, (1, 2, 0)))
  plt.show()

# 得到一组图像
images, labels = iter(trainloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示第一行图像的标签
for j in range(8):
  print(classes[labels[j]])

在这里插入图片描述
truck
cat
ship
plane
deer
frog
bird
plane

#定义网络,损失函数和优化器
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(3, 6, 5)
    self.pool = nn.MaxPool2d(2, 2)
    self.conv2 = nn.Conv2d(6, 16, 5)
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)
  
  def forward(self, x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(-1, 16 * 5 * 5)
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x

net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
#训练网络
for epoch in range(10): 
  for i, (inputs, labels) in enumerate(trainloader):
    inputs = inputs.to(device)
    labels = labels.to(device)
    optimizer.zero_grad()
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
    # 输出统计信息
    if i % 100 == 0:   
      print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

#从测试集中取出8张图片
images, labels = iter(testloader).next()  # 得到一组图像
imshow(torchvision.utils.make_grid(images))  # 展示图像
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

在这里插入图片描述
cat
ship
ship
plane
frog
frog
car
frog

#看看网络在整个数据集上的表现

correct = 0
total = 0

for data in testloader:
  images, labels = data
  images, labels = images.to(device), labels.to(device)
  outputs = net(images)
  _, predicted = torch.max(outputs.data, 1)
  total += labels.size(0)
  correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' 
      % (100 * correct / total))

Accuracy of the network on the 10000 test images: 61 %

4.3 VGG16 对 CIFAR10 分类

在这里插入图片描述

#定义 dataloader
#这里的 transform,dataloader 和之前定义的有所不同

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

#VGG 网络定义

class VGG(nn.Module):
  def __init__(self):
    super(VGG, self).__init__()
    self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
    self.features = self._make_layers(cfg)
    self.classifier = nn.Linear(512, 10)

  def forward(self, x):
    out = self.features(x)
    out = out.view(out.size(0), -1)
    out = self.classifier(out)
    return out

  def _make_layers(self, cfg):
    layers = []
    in_channels = 3
    for x in cfg:
      if x == 'M':
        layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
      else:
        layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), 
              nn.BatchNorm2d(x), nn.ReLU(inplace=True)]
        in_channels = x
    layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
    return nn.Sequential(*layers)

net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

#网络训练
for epoch in range(10): 
  for i, (inputs, labels) in enumerate(trainloader):
    inputs = inputs.to(device)
    labels = labels.to(device)
    optimizer.zero_grad()
    # 正向传播 + 反向传播 + 优化 
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
    
    if i % 100 == 0:   
      print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')
#测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' 
      % (100 * correct / total))

Accuracy of the network on the 10000 test images: 84.25 %
可以看到,使用一个简化版的 VGG 网络,就能够显著提升准确率。尝试不同的激活函数,加入dropout等,可以进一步提高。

5 思考的问题

1、dataloader 里面 shuffle 取不同值有什么区别?
shuffle 可以将数据随机打乱。设置为True每次加载的数据都是随机的,设置为False按顺序加载的数据。

2、transform 里,取了不同值,这个有什么区别?

1 裁剪-Crop
中心裁剪:transforms.CenterCrop
随机裁剪:transforms.RandomCrop
随机长宽比裁剪:transforms.RandomResizedCrop
上下左右中心裁剪:transforms.FiveCrop
上下左右中心裁剪后翻转,transforms.TenCrop
2 翻转和旋转——Flip and Rotation
依概率p水平翻转:transforms.RandomHorizontalFlip(p=0.5)
依概率p垂直翻转:transforms.RandomVerticalFlip(p=0.5)
随机旋转:transforms.RandomRotation
3 图像变换
resize:transforms.Resize
标准化:transforms.Normalize 转为tensor,并归一化:transforms.ToTensor
填充:transforms.Pad 修改亮度、
对比度和饱和度:transforms.ColorJitter
转灰度图:transforms.Grayscale
线性变换:transforms.LinearTransformation()
仿射变换:transforms.RandomAffine
依概率p转为灰度图:transforms.RandomGrayscale
将数据转换为PILImage:transforms.ToPILImage
4 数据增强
transforms.RandomChoice,从给定的一系列transforms中选一个进行操作
transforms.RandomApply,给一个transform加上概率,依概率进行操作
transforms.RandomOrder,将transforms中的操作随机打乱

3、epoch 和 batch 的区别?
Epoch:
一个Epoch就是使用训练集中的全部样本训练一次,Epoch的值就是整个训练数据集被反复使用几次,它定义了学习算法在整个训练集中的工作次数。一个Epoch意味着训练数据集中的每个样本都有机会更新内部模型参数。Epoch由一个或多个Batch组成。
Batch:
每次迭代时使用的一批样本就叫做一个Batch,样本的数量称为Batch Size,用于定义在更新内部模型参数之前要处理的样本数,每一次参数的更新的Loss Function并不是由一个样本得到的,而是由一个Batch的数据加权得到。

4、1x1的卷积和 FC 有什么区别?主要起什么作用?
FC不是全卷积,而Conv 1x1是全卷积。
1x1卷积核的作用:

  • 实现信息的跨通道整合和交互
  • 具有降维和升维的能力,减少网络参数,而不改变图片的宽和高。
  • 可以实现feature map在通道个数上的变化,提升网络的表达能力

5、residual leanring 为什么能够提升准确率?

如果已经学习到较饱和的准确率(或者当发现下层的误差变大时),那么接下来的学习目标就转变为恒等映射的学习,也就是使输入x近似于输出H(x),以保持在后面的层次中不会造成精度下降。
通过“shortcut connections(捷径连接)”的方式,直接把输入x传到输出作为初始结果,输出结果为H(x)=F(x)+x,当F(x)=0时,那么H(x)=x,也就是上面所提到的恒等映射。也就是所谓的残差F(x) := H(x)-x,因此,后面的训练目标就是要将残差结果逼近于0,使到随着网络加深,准确率不下降。
使某一层的输出可以直接跨过几层作为后面某一层的输入,其意义在于为叠加多层网络而使得整个学习模型的错误率不降反升

6、代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?
LeNet网络:
在这里插入图片描述
代码练习二网络使用的ReLU激活函数,LeNet使用的是sigmoid激活函数。
代码二中的池化层是最大池化,LeNet的池化层中有可训练参数。
LeNet输出层使用Softmax函数做多分类,代码二中没有。

7、代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?
使用1*1卷积,不改变feature map 尺寸,同时增大网络深度。或者每次对前一个输入层进行padding填充保持feature map 尺寸。

8、有什么方法可以进一步提升准确率?
调整学习率、激活函数等,加入dropout,增加网络深度,对数据图像做增强处理。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值