704.二分查找
题目:
题目分析:
给出一个数组和目标值,找到目标值所在的位置,返回所在位置的数组下标,如果数组中不存在目标值就返回-1
看到题目的瞬间,就想我直接一个for循环,直接可以写完收工,可看看题目,不对劲,这道题叫做二分查找,所以需要用二分查找解决。
回忆二分查找:
通过比较中间位置的值和目标值的大小关系,不断的缩小查找范围,知道最后不满足自己设定的条件
代码部分:
class Solution {
public int search(int[] nums, int target) {
int left=0;
int right=nums.length-1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
} else{
return mid;
}
}
return -1;
}
}
代码分析:
定义两个
int
类型的变量,表示数组的最左边和最右边,因为是二分查找,所以说left>right表示在数组中没有找到目标值,所以不需要继续循环寻找目标值。在循环里设置mid表示中间值,因为每次循环时都会对left和right进行改变,所以将mid初始化在循环内部。
判断:
nums[mid]
是我们寻找的值,如果我们找到的值小于目标值,又因为这个数组是升序的,mid左侧的所有元素都会小于目标值,不需要继续判断,这是将left = mid + 1;
同理找到的值大于目标值,mid右侧的值全部大于目标值,无需查找。
搜索插入位置
题目:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ar4Ves2N-1641620870251)(https://cdn.jsdelivr.net/gh/fishyin/picodemo//img/202201072229212.png)]
题目分析:
在数组中找到目标值,如果没有找到,就返回目标值应该被插入的位置。
情况一:找到目标值,返回下标。
情况二:未找到目标值,最后返回循环结束后的left
代码:
class Solution {
public int searchInsert(int[] nums, int target) {
int left = 0;
int right = nums.length-1;
while (left <= right) {
int mid = left + (right - left) / 2;
if(nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
return mid;
}
}
return left;
}
}
在排序数组中查找元素的第一个和最后一个位置
题目分析:
寻找目标值的开始位置和目标值的结束位置,没有找到的话就返回[-1,-1].
情况分析:
情况一:要找的目标值在数组范围的左边或者右边,例如数组{3,5,7},目标值为2或者9,就直接返回[-1,-1]情况二:要找的值在数组范围内,但数组中并没有该目标值,例如数组{3,5,7},目标值为4,就直接返回[-1,-1]
情况三:可以在数组中找到目标值
我们可以定义两个方法寻找边界,
getLeftBorder()
方法寻找左边界,getRighterBorder()
方法用来寻找右边界
代码如下:
class Solution {
public int[] searchRange(int[] nums, int target) {
int leftBorder = getLeftBorder (nums, target);
int righterBorder = getRighterBorder (nums, target);
if(leftBorder == -2 || righterBorder == -2) {
return new int[] {-1, -1};
}
if(righterBorder - leftBorder > 1){
return new int [] {leftBorder + 1, righterBorder - 1};
}
return new int[]{-1, -1};
}
public int getLeftBorder(int[] nums, int target){
int left = 0;
int right = nums.length-1;
int leftBorder = -2;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] >= target) {
right = mid - 1;
leftBorder = right;
} else {
left = mid + 1;
}
}
return leftBorder;
}
public int getRighterBorder(int[] nums, int target){
int left = 0;
int right = nums.length-1;
int righterBorder = -2;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
righterBorder = left;
}
}
return righterBorder;
}
}