林大ACM培训心得day4

林大ACM培训心得day4


学会用笔计算解题
一、最大公约数(gcd)
求最大公约数有三种办法
1.暴力枚举法,代码如下:

int a,b;int gcd=0;
cin>>a>>b;
for(int i=1;i<min(a,b);i++)
if(a%i==0&&b%i==0)
if(i>gcd)
gcd=i;
cout<<gcd<<endl;

优点:比较好想,直接粗暴
缺点:循环次数较多,如果输入数据范围较大则容易超时

2.辗转相除法
首先举个例子吧,比如找 1112 和 695 的最大公约数。
首先,用较大的数字对较小的数字取余,也就是进行mod操作
1112 mod 695 = 417(然后用除数695和余数417进行mod操作)
695 mod 417 =278 (循环往复,用除数除以余数)
417 mod 278 = 139 (继续)
278 mod 139 = 0 (当取余结果为0时,停止该过程)
也就是说,278可以被139整除。
当余数为0时,最后一个除数139 就是1112和695的最大公约数。
代码实现如下

int gcd(int a,int b)
{if(a%b!=0)
return gcd(b,a%b);
else return b;}

3.简单粗暴直接法
c++为我们配置了一个函数,可以直接求出最大公约数。具体操作如下

cout<<__gcd(a,b)<<endl;

二、最小公倍数(lcm)

lcm(a,b)=(a*b)/gcd(a,b)

也就是a,b的最小公倍数就是a和b的乘积除以a和b的最大公因数
但为避免计算过程中数据溢出通常先乘再除

lcm(a,b)=a/gcd(a,b)*b

三、多个数的最大公约数与最小公倍数
先求出前两个数的最大公约数,再用这个数与下一个数进行求取最大公约数的操作,反复循环。
代码实现如下:

//假设有num个数
int x[num+10];

int gcd(int a,int b){

if(a%b!=0)

return gcd(b,a%b);

else return b;
}
//此处省略main函数

for(int i=0;i<num;i++)
cin>>x[i];

int k=x[0];

for(int i=1;i<num;i++)
k=gcd(k,x[i]);

cout<<k<<endl;

四、取模运算的性质
为了防止数据溢出,我们通常会根据取模运算的一些性质来对式子进行一些优化。比如:
(a + b) % p = (a % p + b % p) % p
(a * b) % p = (a % p * b % p) % p
a ^ b % p = ((a % p)^b) % p(或者用下面的快速幂)

五、快速幂与二分法
举个例子:求a求 a^b % m的值
快速幂的核心是怎么迅速的将a的b次幂求出来。

1)当b是奇数时,那么有 a^b = a * a^*(b-1)
2)当b是偶数时,那么有 a^b = a^(b/2) * a^(b/2)
快速幂取模代码如下:

#define ll long long
ll mode(ll a,ll b,ll mod)
{
    ll ans=1;
    while(b)
    {
        if(b%2==1)
        {b--;ans=ans*a%mod;}
        a=a*a%mod;
        b=b/2;
    }
    return ans;
}
	

typedef long long ll;

ll Fastpow(ll a, ll b, ll m)
{
	ll ans;
	if(b == 0)
		return 1;
		
	else if(b & 1)//b & 1等价于 b % 2==1
		return a * Fastpow(a, b - 1, m) % m;
		
	else{
		ans = Fastpow(a, b/2, m) % m;
		return ans * ans % m;
	}
	

五.简化计算过程
GCD&LCM
复杂算法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b)
{return b?gcd(b,a%b):a;}
ll t,x,y,ans;
int main()
{
    ios::sync_with_stdio(false);
    cin>>t;
    while(t--)
    {
        cin>>x>>y;//假设gcd(a,b)=x,lcm(a,b)=y,则可得:gcd*lcm=a*b,即x*y=a*b
        ans=0;
        for(ll a=x;a<=y;a+=x)//在[x,y]区间内暴力遍历所有a的取值,a每次+x(比每次+1要快)
        //每次+x的原因是,由于x是a和b的最大公约数,则a一定是x的倍数,所以只需+x即可
        {
            if((x*y)%a==0)//满足a*b=x*y,则b=x*y/a,首先必须满足(x*y)%a==0
            {
                ll b=x*y/a;//直接得到b的取值
                if(gcd(a,b)==x)ans++;//gcd(a,b)==x,即满足条件
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}

简化方法

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll t,a,b,x,y,ans;
int main()
{
    ios::sync_with_stdio(false);
    cin>>t;
    while(t--)
    {
        cin>>x>>y;
        ans=0;
        if(y%x!=0){printf("0\n");continue;}//最小公倍数不是最大公约数的倍数,直接输出0
        y=y/x;//将y缩小到y1
        for(a=1;a*a<=y;a++)//在[1,y1]区间内暴力遍历所有a1的取值,a每次+1
        {
            if(y%a==0)//满足y1=a1*b1,则b1=y1/a1,首先必须满足y1%a1==0
            {
                b=y/a;//直接得到b1的取值
                if(__gcd(a,b)==1)//gcd(a1,b1)==1则满足条件
                {
                    if(a*a==y)ans++;//特判a1*a1=y的情况,答案+1
                    else ans+=2;//其他情况答案+2
                }
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}

高木同学的因子

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll x,y,i,ans;
int main()
{
    ios::sync_with_stdio(false);
    cin>>x>>y;
    ll k=__gcd(x,y);
    for(i=1;i*i<k;i++)//i*i=k
        if(k%i==0)ans+=2;
    if(i*i==k)ans++;
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值