LCM与GCD

求GCD常用辗转相除法(欧几里得算法)

例如求gcd(12, 18): 先用12 % 18 == 12
再用上一轮模数(18)模上上一轮取模的结果(12):18 % 12== 6
再用上一轮的模数(12)模上上一轮取模的结果(6):12 % 6 == 0
发现结果等于0了,这时候的模数(6)就是最后的答案。

以下是gcd代码:

int gcd(int a,int b)
{
	if(b == 0)
	return a;
	else
	return gcd(b,a%b);
}

algorithm库中有可以直接求gcd的函数__gcd();

求LCM

基于a * b == gcd(a,b) *lcm(a,b)可以得到: lcm(a, b) == a * b / gcd(a, b)

具体来说是这样:

int lcm(int a,int b)
{
	return a*b/__gcd(a,b);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值