求GCD常用辗转相除法(欧几里得算法)
①例如求gcd(12, 18): 先用12 % 18 == 12;
②再用上一轮模数(18)模上上一轮取模的结果(12):18 % 12== 6;
③再用上一轮的模数(12)模上上一轮取模的结果(6):12 % 6 == 0;
④发现结果等于0了,这时候的模数(6)就是最后的答案。
以下是gcd代码:
int gcd(int a,int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
algorithm库中有可以直接求gcd的函数__gcd();
求LCM
基于a * b == gcd(a,b) *lcm(a,b)可以得到: lcm(a, b) == a * b / gcd(a, b)
具体来说是这样:
int lcm(int a,int b)
{
return a*b/__gcd(a,b);
}