Anaconda使用清华源安装不同版本的Pytorch

1 虚拟环境的创建(Pycharm方法)

首先安装Anaconda,在CSDN中教程众多,不再介绍。

Anaconda 的常用命令:

conda -V  # 安装完成后,查看conda版本
conda list  # 在当前的虚拟环境中查看安装了哪些包
conda env list  # 查看虚拟环境列表
conda create -n env_name python=3.8.10  # 创建虚拟环境并指定python版本,其中ns3_1为虚拟环境名称。
conda remove -n env_name --all  # 删除名称为env_name的虚拟环境
conda activate env_name  # 激活名为env_name的虚拟环境
conda deactivate  # 关闭当前虚拟环境

通过conda create -n env_name python=3.8.10创建好虚拟环境后,我们在Pycharm中进行虚拟环境的创建!

在这里插入图片描述

  1. 我们通过setting
  2. 选择python interpreter
  3. 选择使用Anaconda创建新环境(新的解释器)。我们在这一步可以选择python版本、虚拟环境路径等等。
  4. 点击OK,环境创建完成。我们可以在对应路径中查看。

2 Pytorch 版本的选择

借鉴了这位博主的文章: 解决安装pytorch速度慢的问题.

1、 如果你要下载安装最新版本的Pytorch,可以在以下链接中使用命令进行安装。
传送门: Pytorch最新版本安装页面.

在这里插入图片描述

2、如果你要下载安装旧版本的Pytorch,你可以在以下连接中使用命令进行安装。
传送门: Pytorch过去版本安装页面.

在这里插入图片描述

在这里插入图片描述

3 设置清华源安装Pytorch

但是直接使用官网给的命令在anaconda虚拟环境中,会下载速度极其地慢。所以我们要设置清华源来避免这种情况发生。

第一步:我们先打开Anaconda中的虚拟环境。
1、 可以直接找到**Anaconda Navigator(Anaconda)**打开。

在这里插入图片描述
2、.稍等片刻,进入界面,选择虚拟环境。并选择Open Terminal,打开对应的虚拟环境的终端。
3、 另一种方法,也可以直接在win+r,cmd进入终端base环境。接着conda activate virtual_environment_name

第二步:我们首先查看当前channels并使用代码恢复conda的官方默认源,以免其他出错的channels影响我们的工作进行。

conda -V  # 安装完成后,查看conda版本
conda list  # 在当前的虚拟环境中查看安装了哪些包
conda env list  # 查看虚拟环境列表
conda create -n env_name python=3.8.10  # 创建虚拟环境并指定python版本,其中ns3_1为虚拟环境名称。
conda remove -n env_name --all  # 删除名称为env_name的虚拟环境
conda activate env_name  # 激活名为env_name的虚拟环境
conda deactivate  # 关闭当前虚拟环境
conda config --show channels  # 查看当前的channels
conda config --remove-key channels  # 恢复conda的官方默认源

第三步:设置channels
依次设置三条默认的清华源channels

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

然后再设置清华镜像源关于pytorch的channels

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

第四步:找到从pytorch官网获取的command,将这条下载命令最后面的-c pytorch删除,-c pytorch参数指定了conda从pytorch的channel获取文件,所以在这里是不能用的。删除-c pytorch后,将命令输入命令行,直接回车。此时,软件就将从清华镜像源获取文件了,速度要快上很多。

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=10.2

如果conda总是不行的话,在有梯子的前提下,也可以考虑

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

4 验证我们安装的Pytorch并查看GPU\CPU个数

在我们虚拟环境的终端中输入python进入python环境,然后输入import torch 回车。如果不报错说明pytorch已经成功安装。若要想查看版本可以再输入print(torch._version_)。我们如果想要查看和我们的cuda版本和当前的pytorch版本是否适配,我们输入print(torch.cuda.is_available()),如果返回True,那么cuda版本和当前的pytorch版本适配,我们可以正常使用GPU加速!

python
import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.cuda.device_count())  # 查看GPU个数
print(os.cpu_count())  # 查看CPU个数

5 卸载我们安装的Pytorch

pip uninstall torch
pip uninstall torchvision
pip uninstall torchaudio

其他注意事项

1、目前,pytorch1.11.0版本和pytorch1.10.0版本已经不适用于cuda10.2版本。我们要想使用cuda10.2,需要使用pytorch1.9.1版本。

2、30系列英伟达显卡最低要求就是cuda11版本。而要使用cuda11版本,我们需要配套pytorch1.7.0以上版本的,但cuda11配合pytorch1.8有问题。

3、虚拟机的显卡是虚拟的,不能使用CUDA。虚拟机上装Nvidia显卡驱动会导致其他驱动全都不能用,所以不能在虚拟机上装N卡驱动,即无法使用GPU。所以我们安装CPU版本的Pytorch

4、虚拟机上,pypi是Python Package Index 的首字母简写,其实表示的是Python的Package的索引,这个也是Python的官方索引。你需要的包(Package)基本上都可以从这里面找到。

sudo pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

接下来将some-package替换为我们想要安装的包即可。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度不睡觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值