二阶常系数线性递推数列的通项公式

该文介绍了如何通过解二次方程找到递推序列的通项公式,分别展示了当根不相等和相等时的情况,并给出了两个具体的例子进行详细解析,帮助理解递推序列的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目: x 0 = α x_0=\alpha x0=α, x 1 = β x_1=\beta x1=β, x n + 1 = m 1 x n + m 2 x n − 1 x_{n+1}=m_1x_n+m_2x_{n-1} xn+1=m1xn+m2xn1,求 x n x_n xn 的通项公式。

参考答案
求解方程
λ 2 − m 1 λ − m 2 = 0 \lambda^2-m_1\lambda-m_2=0 λ2m1λm2=0
得到 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2

情形一: λ 1 ≠ λ 2 ∈ R \lambda_1\neq\lambda_2\in \mathbb{R} λ1=λ2R,则通项公式为

x n = c 1 λ 1 n + c 2 λ 2 n x_n=c_1\lambda_1^n+c_2\lambda_2^n xn=c1λ1n+c2λ2n

例一: x 0 = 1 x_0=1 x0=1, x 1 = 2 x_1=2 x1=2, x n + 1 = 4 x n − 3 x n − 1 x_{n+1}=4x_n-3x_{n-1} xn+1=4xn3xn1,求 x n x_n xn 的通项公式。

参考答案:

求解方程
λ 2 − 4 λ + 3 = 0 \lambda^2-4\lambda+3=0 λ24λ+3=0
得到 λ 1 = 1 , λ 2 = 3 \lambda_1=1,\lambda_2=3 λ1=1,λ2=3

则通项公式为

x n = c 1 + c 2 ⋅ 3 n x_n=c_1+c_2\cdot3^n xn=c1+c23n

x 0 = 1 , a 1 = 2 x_0=1,a_1=2 x0=1,a1=2带入,得到

c 1 = 1 2 , c 2 = 1 2 c_1=\frac{1}{2},c_2=\frac{1}{2} c1=21,c2=21

于是

x n = 1 2 + 1 2 ⋅ 3 n x_n=\frac{1}{2}+\frac{1}{2}\cdot3^n xn=21+213n

情形二: λ 1 = λ 2 ∈ R \lambda_1=\lambda_2\in \mathbb{R} λ1=λ2R,则通项公式为

x n = ( c 1 + c 2 n ) λ n x_n=(c_1+c_2n)\lambda^n xn=(c1+c2n)λn

例二: x 0 = 1 x_0=1 x0=1, x 1 = 2 x_1=2 x1=2, x n + 1 = 4 x n − 4 x n − 1 x_{n+1}=4x_n-4x_{n-1} xn+1=4xn4xn1,求 x n x_n xn 的通项公式。
求解方程
λ 2 − 4 λ + 4 = 0 \lambda^2-4\lambda+4=0 λ24λ+4=0
得到 λ 1 = λ 2 = 2 \lambda_1=\lambda_2=2 λ1=λ2=2

则通项公式为

x n = ( c 1 + c 2 n ) 2 n x_n=(c_1+c_2n)2^n xn=(c1+c2n)2n

x 0 = 1 , a 1 = 2 x_0=1,a_1=2 x0=1,a1=2带入,得到

c 1 = 1 , c 2 = 0 c_1=1,c_2=0 c1=1,c2=0

于是

x n = 2 n x_n=2^n xn=2n


算完之后才发现,我举得这两个例子好特殊啊。。。不过大致就是这个意思,应该能看懂吧?


2022年2月26日11:25:32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值