题目: 设 x 0 = α x_0=\alpha x0=α, x 1 = β x_1=\beta x1=β, x n + 1 = m 1 x n + m 2 x n − 1 x_{n+1}=m_1x_n+m_2x_{n-1} xn+1=m1xn+m2xn−1,求 x n x_n xn 的通项公式。
参考答案
求解方程
λ
2
−
m
1
λ
−
m
2
=
0
\lambda^2-m_1\lambda-m_2=0
λ2−m1λ−m2=0
得到
λ
1
,
λ
2
\lambda_1,\lambda_2
λ1,λ2
情形一: λ 1 ≠ λ 2 ∈ R \lambda_1\neq\lambda_2\in \mathbb{R} λ1=λ2∈R,则通项公式为
x n = c 1 λ 1 n + c 2 λ 2 n x_n=c_1\lambda_1^n+c_2\lambda_2^n xn=c1λ1n+c2λ2n
例一: 设 x 0 = 1 x_0=1 x0=1, x 1 = 2 x_1=2 x1=2, x n + 1 = 4 x n − 3 x n − 1 x_{n+1}=4x_n-3x_{n-1} xn+1=4xn−3xn−1,求 x n x_n xn 的通项公式。
参考答案:
求解方程
λ
2
−
4
λ
+
3
=
0
\lambda^2-4\lambda+3=0
λ2−4λ+3=0
得到
λ
1
=
1
,
λ
2
=
3
\lambda_1=1,\lambda_2=3
λ1=1,λ2=3
则通项公式为
x n = c 1 + c 2 ⋅ 3 n x_n=c_1+c_2\cdot3^n xn=c1+c2⋅3n
将 x 0 = 1 , a 1 = 2 x_0=1,a_1=2 x0=1,a1=2带入,得到
c 1 = 1 2 , c 2 = 1 2 c_1=\frac{1}{2},c_2=\frac{1}{2} c1=21,c2=21
于是
x n = 1 2 + 1 2 ⋅ 3 n x_n=\frac{1}{2}+\frac{1}{2}\cdot3^n xn=21+21⋅3n
情形二: λ 1 = λ 2 ∈ R \lambda_1=\lambda_2\in \mathbb{R} λ1=λ2∈R,则通项公式为
x n = ( c 1 + c 2 n ) λ n x_n=(c_1+c_2n)\lambda^n xn=(c1+c2n)λn
例二: 设
x
0
=
1
x_0=1
x0=1,
x
1
=
2
x_1=2
x1=2,
x
n
+
1
=
4
x
n
−
4
x
n
−
1
x_{n+1}=4x_n-4x_{n-1}
xn+1=4xn−4xn−1,求
x
n
x_n
xn 的通项公式。
求解方程
λ
2
−
4
λ
+
4
=
0
\lambda^2-4\lambda+4=0
λ2−4λ+4=0
得到
λ
1
=
λ
2
=
2
\lambda_1=\lambda_2=2
λ1=λ2=2
则通项公式为
x n = ( c 1 + c 2 n ) 2 n x_n=(c_1+c_2n)2^n xn=(c1+c2n)2n
将 x 0 = 1 , a 1 = 2 x_0=1,a_1=2 x0=1,a1=2带入,得到
c 1 = 1 , c 2 = 0 c_1=1,c_2=0 c1=1,c2=0
于是
x n = 2 n x_n=2^n xn=2n
算完之后才发现,我举得这两个例子好特殊啊。。。不过大致就是这个意思,应该能看懂吧?
2022年2月26日11:25:32