【离散数学和组合数学】常系数线性齐次递推关系与常系数线性非齐次递推关系的求解

常系数线性齐次递推关系得求解

常系数线性齐次递推关系的定义

{f(n)}为一个数列,形如

k为正整数,g(n)不为0,f(n)就为k阶线性非齐次递推关系,

若g(n)为0,f(n)就为k阶线性齐次递推关系,

若c都为常数,f(n)就为k阶常系数线性递推关系。

特征方程与特征根的定义

方程为f(n)的特征方程,它的解q1,q2,...,qn为f(n)的特征根。

引理一

若q为特征方程的特征根,则是递推关系的解。

证明:

,又因为q不等于0,则

反之亦然。

引理二

若h1(n)和h2(n)都是f(n)的解,b1,b2是常数,则b1h1(n)+b2h2(n)也是f(n)的解。

证明:

所以b1h1(n)+b2h2(n)也是f(n)的解。

所以f(n)可以表示为

通解的定义

f(n)的每一个解都可以有一组常数d1,d2,...,dk表示为

为f(n)的通解。

也就是说递推关系具有初始值,每一个解的常系数都是唯一的,那么我们就要证明b1,b2,...,bn是唯一的,令f(0)=b1+b2+...+bn=a0,f(1)=b1q1+b2q2+...+bnqn,...,那么就有方程组

...

方程组的系数行列式为范德蒙德行列式,如图

每个q都不相同,所以行列式不为0,则解唯一,也就是通解中的常系数唯一。

重根的情况

假设特征根出现二重根q,则对应的解就是

若是k重根,则对应的解就是

证明:

首先证明二重根,若q是特征方程的二重跟,则等式变换得。对两边边求导,得到的等式具有一个根q。再对等式两边乘以q,得到的等式具有一个根q发现nq^n满足递推关系,二重根的解即证。多重根则对等式多次求导再乘以q,同样能证明。

常系数线性非齐次递推关系的求解

常系数线性非齐次递推关系的形式为

解的形式

常系数齐次递推关系的通解加上常系数非齐次递推关系的特解。f(n)=f1(n)+f2(n),其中f1(n)为f(n)=c1f(n-1)+c2f(n-2)+...+ckf(n-k)的通解,f2(n)为f(n)=c1f(n-1)+c2f(n-2)+...+ckf(n-k)+g(n)的特解。

一般的g(n)的特解

g(n)

特征方程P(x)

特解形式

为P(X)=0的m重根

1为P(X)=0的m重根

为P(X)=0的m重根

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值