【学习记录】:《An Unsupervised Learning Model for Deformable Medical Image Registration》总结

1.相关介绍:

大多数配准的方法解决了每个体素对的优化问题(体素对齐),对配准映射执行平滑约束。本文从体积(volumes)集合中学习参数优化配准函数,输入两个n维的体积(图像),输出一个图像所有体积元素到到另一个图像的映射。网络的参数(卷积核的权重等)通过对训练集的不断优化获得,使用一个全局优化函数代替传统的对每个测试图像对的优化。本设计的优点:

1.无监督,不需要金标准和标注信息;

2.使用权值共享,通过功能(函数)评估进行配准;

3.实现代价函数的参数优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值