搭建Spark开发环境

本文详细介绍了在已配置好的Hadoop环境下,如何下载、解压Spark安装包,修改配置文件,包括设置环境变量、指定Master信息,以及复制和重命名必要文件。接着,文章说明了如何将Spark目录分发到其他节点,并在hadoop01上启动Spark集群。最后,提示可以通过IP地址检查集群状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:在进行本文操作时需先配置好Hadoop,若未配置完成可先看:

https://blog.csdn.net/weixin_54348877/category_11427523.html?spm=1001.2014.3001.5482

根据其配置完Hadoop后再进行本文操作。

1. 下载spark安装包

2. 解压spark安装包

        一. 进入software目录

cd /export/software

        二.  rz上传

 通过rz命令上传spark.tgz包到software目录下

### 如何搭建 Spark 开发环境 #### 本地模式配置 为了在本地环境中设置Spark开发环境,准备工作至关重要[^1]。确保计算机已安装Java Development Kit (JDK),因为Spark依赖于Java运行。 对于操作系统为Linux的用户,在虚拟机中操作可以简化流程。下载好对应版本的Spark压缩包之后,将其上传至虚拟机或直接通过命令行工具wget在虚拟机内部获取资源[^2]。接着解压该文件到指定位置,并建立软连接以便后续调用: ```bash tar -xvf spark-2.4.8-bin-without-hadoop.tgz -C ~/opt cd ~/opt ln -s spark-2.4.8-bin-without-hadoop spark ``` 上述命令实现了将解压后的Spark文件夹移动到了`~/opt/`路径下,并创建了一个名为`spark`的快捷方式指向实际版本号命名的文件夹,方便以后升级替换时不需修改其他地方引用的位置。 #### Python集成支持 针对Python开发者而言,为了让PySpark正常运作,还需要额外处理一些事项来使两者能够良好协作。具体做法是从Spark安装目录中的python子目录拷贝pyspark及相关库到Python自身的第三方模块存储区,例如Windows环境下可能是这样的路径:`C:\Python\Python35\Lib\site-packages`;而在类Unix系统上,则通常是位于`/usr/local/lib/pythonX.Y/dist-packages`(其中X.Y代表具体的Python版本)[^3]。 完成以上步骤后,理论上已经可以在本地上启动简单的Spark应用测试了。不过建议进一步查阅官方文档或者其他权威资料确认是否有遗漏项以及了解更高级别的配置选项。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值