<数据集>AffectNet表情识别数据集<目标检测>

数据集格式:VOC+YOLO格式

图片数量:23129张

标注数量(xml文件个数):23129

标注数量(txt文件个数):23129

标注类别数:23129

标注类别名称:Anger、Contempt、Disgust、Fear、Happy、Neutral、Sad、Surprise

序号类别名称图片数框数
1Happy25782578
2Disgust30683068
3Neutral20082008
4Contempt27282728
5Surprise38733873
6Sad26602660
7Fear29082908
8Anger33063306

使用标注工具:labelImg

标注规则:对类别进行画水平矩形框

图片示例:

标注示例:

### 寻找适用于YOLO脸部表情识别数据集 对于面部表情识别的任务,选择合适的数据集至关重要。通常情况下,用于训练和测试的表情识别数据集应具备多样性、高质量以及足够的样本量来覆盖各种可能的情况。 #### 常见的面部表情识别数据集 1. **FER2013** FER2013 是一个广泛使用的公共情感分析数据库,包含了超过 35,887 张来自互联网的照片,每张照片都由人类标注者标记了七种基本情绪之一:愤怒、厌恶、恐惧、快乐、悲伤、惊讶和平静。该数据集被划分为训练集(28,709)、验证集(3,589)和测试集(3,589)。尽管原始图像分辨率较低,但其丰富的类别分布使其成为研究中的重要资源[^3]。 2. **AffectNet** AffectNet 数据库收集自网络上的自然场景图片,总共约有 1 百万幅带标签的脸部图像,其中大约 40% 的图像是人工审核过的高置信度样本。此集合不仅限于离散的情绪分类,还包括连续维度的情感评分(效价-唤醒),这使得它非常适合探索复杂多样的真实世界情境下的感情表达模式。 3. **CK+ (Cohn-Kanade Plus)** CK+ 提供了一组精心挑选并经过严格控制条件拍摄得到的序列化静态正面人脸图像,涵盖了八类典型情绪变化过程。由于采集环境受控良好且提供了精确的时间戳信息,因此特别适合用来开发和评估细微差别较大的动态表情识别系统。 为了适应 YOLO 模型的要求,在选用上述任何一个数据集之前,需将其转换成符合 YOLO 输入格式的标准形式——即每个文件夹内放置对应类别的子目录,并为每一项记录创建相应的 .txt 文件描述边界框位置与所属类别编号。具体操作可以参照如下 Python 脚本示范: ```python import os from xml.etree import ElementTree as ET def convert_voc_to_yolo(voc_annotation_dir, output_dir): """ 将 Pascal VOC XML 注解转化为 YOLO txt 格式的注解 参数: voc_annotation_dir : str - 存储 Pascal VOC XML 文件路径 output_dir : str - 输出 yolo 格式文本的位置 返回值: None """ if not os.path.exists(output_dir): os.makedirs(output_dir) for filename in os.listdir(voc_annotation_dir): if filename.endswith('.xml'): tree = ET.parse(os.path.join(voc_annotation_dir,filename)) root = tree.getroot() with open(os.path.join(output_dir,f"{filename[:-4]}.txt"), 'w') as f: size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) for obj in root.findall('object'): label = obj.find('name').text bndbox = obj.find('bndbox') xmin = float(bndbox.find('xmin').text)/width ymin = float(bndbox.find('ymin').text)/height xmax = float(bndbox.find('xmax').text)/width ymax = float(bndbox.find('ymax').text)/height x_center = ((xmin+xmax)/2)-1 y_center = ((ymin+ymax)/2)-1 box_width = abs(xmax-xmin) box_height=abs(ymax-ymin) line=f'{label} {x_center:.6f} {y_center:.6f} {box_width:.6f} {box_height:.6f}\n' f.write(line) if __name__=='__main__': # 替换为你自己的VOC注释文件夹路径 voc_anno_path='/path/to/voc/annotations/' # 设置输出Yolo格式注释的目标文件夹 out_put_folder='./converted_annotations/' convert_voc_to_yolo(voc_anno_path,out_put_folder) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值