【数据集】mini-imagenet

【数据集】mini-imagenet

介绍

mini-imagenet数据集是imagenet数据集的一个子集,最早于《Matching Networks for One Shot Learning》中被提出:

Section 4.1.2
ImageNet is a notoriously large data set which can be quite a feat of
engineering and infrastructure to run experiments upon it, requiring many resources. Thus, as well as using the full ImageNet data set, we devised a new data set – miniImageNet – consisting of 60, 000 colour images of size 84 × 84 with 100 classes, each having 600 examples. This dataset is more complex than CIFAR10, but fits in memory on modern machines, making it very convenient for rapid prototyping and experimentation.

mini-imagenet有100个类别,每个类别有600张三通道彩色图像样本,每张图像样本的大小为84 × 84(论文中是这么描述的,但实际数据集中的图像样本不是84 ×84,可能原文的意思是需要将图像样本都resize成84 × 84再使用,大多数基于mini-imagenet数据集的实验都是这么实施的)。

结构

mini-imagenet中80个类别用于训练,20个类别用于测试,由于原文针对的是One Shot Learning1,因此训练类别测试类别没有交集,其原始数据集文件的结构为:

├── images:     存放所有图像样本的文件夹(包含100个类别对应的图像,共60000张)
├── train.csv:  训练集内容,数据格式为[图像样本文件名|类别](包含64个类别,共38400条数据)
├── val.csv:    验证集内容,数据格式为[图像样本文件名|类别](包含16个类别,共9600条数据)
└── test.csv:   测试集内容,数据格式为[图像样本文件名|类别](包含20个类别,共12000条数据)

自mini-imagenet数据集被提出后,很多分类任务也采用其进行实验,不过与One Shot Learning不同,这些分类任务将其作为普通的监督学习数据集,将其分为train、val(可选)和test部分,每部分包含全部的类别,此时mini-imagenet数据集文件的结构为:

├── images:     存放所有图像样本的文件夹(包含100个类别对应的图像,共60000张)
├── train.csv:  训练集内容,数据格式为[图像样本文件名|类别](包含100个类别,共60000 * train rate条数据)
├── val.csv:    验证集内容,数据格式为[图像样本文件名|类别](包含100个类别,共60000 * val rate条数据)
└── test.csv:   测试集内容,数据格式为[图像样本文件名|类别](包含100个类别,共60000 * test rate条数据)

可学习文章《使用Mini-ImageNet训练分类网络》中提供的代码,按照需求制作数据集。

下载

原始格式的数据集文件可从mini-imagenet(format: csv)处下载。

由于图像样本在传输过程中传输较慢而且容易损坏,因此也可选择将图像样本的数据保存为其他格式,一种选择是pkl文件格式,此时原始格式的数据集保存后的pkl文件可从mini-imagenet(format: pkl)处下载。

基于上述pkl文件的普通的监督学习mini-imagenet数据集制作方法可参考mini-imagenet(format: pkl) convertion


  1. 【机器学习300问】113、什么是One-Shot学习?它和传统机器学习有什么不同? ↩︎

### 回答1: Mini-ImageNet数据集是一个用于图像分类任务的小型数据集,由600个类别、每个类别有5张训练图像和15张测试图像组成。这些图像都是从ImageNet数据集中随机选择的,并且它们的大小为84x84像素。Mini-ImageNet数据集被广泛用于模型预训练和元学习领域的研究,因为它具有较小的规模和高度挑战性的分类任务。 ### 回答2: mini-ImageNet数据集是一种用于元学习的小型图像分类数据集。这个数据集的任务是,在任意给定的类别集合上,快速学习准确分类新的图像。 mini-ImageNet数据集包含60,000张RGB图像,这些图像都是从大的ImageNet数据库中随机选择的,共有100个类别,每个类别有600张图片。它被广泛用于元学习算法的评估和比较,并且也是机器学习算法中经典的小数据集之一。 正如其名称所示,mini-ImageNet数据集ImageNet数据集的一个小子集。它的大小只有ImageNet数据集的0.1%,因此,它的图像数量较少,并且每个类别的样本数量也较少。这使得数据集学习过程更具挑战性,因为需要快速学习新的类别,并且需要克服小样本问题。 mini-ImageNet数据集的任务是通过在大量的训练类别上进行训练,使模型能够快速适应新类别,学习较少的样本并进行准确分类。在此任务上,模型被要求对来自未见过的100个类别的样本进行分类,并且在仅使用少部分样本时,能够达到最佳的分类性能。 总的来说,mini-ImageNet是一种广泛使用的数据集,它为元学习和小样本学习算法提供了一个评估和比较的标准,并且是许多研究中经常使用的基准测试集之一。 ### 回答3: Mini-Imagenet数据集是一个常用的小规模图像分类数据集,它主要用于测试和评估少样本学习(Few-Shot Learning)算法的性能。该数据集的设计灵感来自于大规模图像分类数据集ImageNet,但Mini-Imagenet数据集规模更小,仅包含60,000张32x32的彩色图像,共分为100个类别。每个类别包含600张图像,其中500张为训练集,100张为测试集。 Mini-Imagenet数据集中的图像类别涵盖了各种物体、动物和植物等不同类别,具有较高的多样性和复杂性,可以很好地测试算法面对复杂场景和复杂类别时的表现。 Mini-Imagenet数据集主要应用在Few-Shot Learning领域,该算法旨在通过训练少量的数据样本,使算法能够在测试集上正确分类。该领域是近年来深度学习研究中的热门方向,受到了广泛的关注。通过将Mini-Imagenet数据集作为基准数据集,可以很好地评估不同的Few-Shot Learning算法的性能,并促进该领域的研究进展。 总之,Mini-Imagenet数据集是一个小规模的图像分类数据集,包含100个类别的图像,主要用于测试和评估Few-Shot Learning算法的性能。该数据集的应用可以促进Few-Shot Learning领域的研究,并在实际应用场景中有一定的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hylan_J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值