miniImageNet数据集介绍

miniImageNet源自ImageNet,常用于元学习和小样本学习研究。该数据集包含100类60000张84x84彩色图片,每类600张,由DeepMind提出并用作基准。数据集分为训练、测试和验证集,提供更复杂的图像用于实验研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

miniImageNet和omniglot数据集在元学习和小样本学习领域应用广泛,但是网络上鲜有对miniImageNet数据集的介绍,因此在这里我对这个数据集做了一个简要的介绍。

ImageNet简介

miniImageNet数据集节选自ImageNet数据集。ImageNet是一个非常有名的大型视觉数据集,它的建立旨在促进视觉识别研究。训练ImageNet数据集需要消耗大量的计算资源。ImageNet为超过1400万张图像进行了注释,而且给至少100万张图像提供了边框。

ImageNet包含2万多个类别,比如:“气球”、“轮胎”和“狗”等类别,ImageNet的每个类别均有不少于500张图像。

训练这么多图像需要消耗大量的资源,因此在2016年google DeepMind团队Oriol Vinyals等人在ImageNet的基础上提取出了miniImageNet数据集。

miniImageNet介绍

来源

DeepMind团队首次将miniImageNet数据集用于小样本学习研究,从此miniImageNet成为了元学习和小样本领域的基准数据集。

DeepMind的那篇小样本学习的论文就是大名鼎鼎的Matching Network的来源: Matching Networks for One Shot Learning

miniImageNet包含100类共60000张彩色图片,其中每类有600个样本,每张图片的规格为 84

### miniImageNet 数据集概述 miniImageNet 是一个专为少样本学习设计的数据集,源自更大的 ImageNet 数据集[^1]。该数据集特别适合用于评估和开发新的机器学习算法,在计算机视觉领域具有重要地位。 #### 数据集特点 - **规模**: 总体大小约为 1.9 GB。 - **结构**: 包括 100 类不同的物体类别,每一类含有 600 幠图像实例。 - **用途**: 主要应用于图像分类以及少样本学习的研究场景中[^2]。 #### 文件格式与内容 数据以压缩包形式提供,解压后可获得大量的图像文件,这些图像是从原始 ImageNet 中精心挑选出来的子集,旨在保持足够的多样性来支持有效的模型训练和测试。 ### 获取方法 对于希望使用此数据集的研究人员来说,可以通过特定的在线资源库访问并下载完整的 miniImageNet 数据集。通常情况下,这类资源会给出详细的说明文档指导用户完成整个过程。 ### 数据集划分调整 值得注意的是,默认的 miniImageNet 划分可能不完全满足某些具体应用场景的需求。例如,有研究人员指出默认设置下的训练/验证/测试分割比例并不理想,因此建议按照实际需求重新分配各个部分的比例。一种常见的做法是将每种类别的图片数量按 4:1:1 的比率分为训练集、验证集和测试集,即每个类别下各有 400 张作为训练样本,各 100 张分别作为验证和测试样本[^3]。 ```python import pandas as pd # 示例代码展示如何读取CSV文件中的路径信息 def load_data(file_path): data = pd.read_csv(file_path) return data['filename'].tolist(), data['label'].tolist() train_files, train_labels = load_data('path/to/train.csv') val_files, val_labels = load_data('path/to/val.csv') test_files, test_labels = load_data('path/to/test.csv') ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值